Cho tam giác ABC có đường tròn bàng tiếp góc A tiếp xúc với BC tại D. Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ABD, ACD tiếp xúc với AD tại một điểm chung.
Cho tam giác ABC có đường tròn bàng tiếp góc A tiếp xúc với BC tại D. Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ABD, ACD tiếp xúc với AD tại một điểm chung.
Cho tam giác ABC có đường tròn bàng tiếp góc A tiếp xúc với BC tại D. Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ABD, ACD tiếp xúc với AD tại một điểm chung .
Cho tam giác ABC có đường tròn bàng tiếp góc A tiếp xúc với BC tại D. Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ABD, ACD tiếp xúc với AD tại một điểm chung.
THAM KHẢO NHÉ. XIN LỖI VÌ KO TRÙNG ĐỀ
Giải thích các bước giải:
a.Gọi là tâm đường tròn bàng tiếp trong góc
lần lượt là phân giác ngoài tại đỉnh
Ta có tiếp xúc lần lượt tại
là tiếp tuyến của
b.Vì tiếp xúc với tại là tiếp tuyến của
Ta có là tiếp tuyến của
là tiếp tuyến của
c.Ta có:
Cho tam giác ABC. D là tiếp điểm của đường tròn bàng tiếp góc A với BC.
a) Chứng minh rằng AB + BD = AC +CD.
b) Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ADB và ADC tiếp xúc nhau.
cho tam giác ABC , Đường tròn (I) nội tiếp tam giác tiếp xúc với cạnh BC tại D. Đường tròn (K) là đường tròn bàng tiếp trong góc A tiếp xúc với BC tại E. Gọi F là điểm đối xứng của D qua I. Chứng minh rằng
a) tam giác AIF đồng dạng với tam giác AKE
b) trung điểm của BC cũng là trung điểm của DE
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
cho tam giác ABC ,đường tròn nội tiếp tâm (I) tiếp xúc với cạnh BC tại D.đường Tròn bàng tiếp góc A tiếp xúc với BC tại E.chứng minh rằng D,E đối xứng nhau qua trung điểm của BC
Ta chỉ cần chứng minh \(BD=CE.\) (Thực vậy, khi đó nếu I là trung điểm BC thì BI=EI).
Để cho tiện ta kí hiệu \(a=BC,b=CA,c=AB.\)
Gọi \(D,P,Q\) là tiếp điểm của đường tròn nội tiếp với ba cạnh \(BC,CA,AB.\)
Gọi \(E,R,S\) là tiếp điểm của đường tròn bàng tiếp góc A với ba cạnh \(BC,CA,AB.\)
Ta có \(BD=BQ,CR=CD,AQ=AR\Rightarrow BD+CR+AQ=\frac{a+b+c}{2}\)
Mặt khác \(AR+CR=b\Rightarrow BD=\frac{a+c-b}{2}\). (1)
Theo tính chất tiếp tuyến
\(2AR=AR+AS=AB+AC+BS+CR=AB+AC+BC\Rightarrow AR=\frac{a+b+c}{2}.\)
Do đó \(CE=CR=AR-AC=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}.\) (2)
Từ (1),(2) suy ra \(BD=CE\).
cho tam giác ABC có chu vi là 2P.Các đường tròn bàng tiếp trong góc A,B,C tiếp cúc với các cạnh BC,CA,AB theo thứ tự A1,B1,C1 .Đường tròn bàng tiếp của tam giác tiếp xúc với BC tại m
a) chứng minh CM=P
b) chứng minh rằng nếu AA1=BB1=CC1 thì tam giác ABC đều
cho em xin lỗi em đánh thiếu. đường tròn bàng tiếp trong góc C tiếp xúc với BC tại M
Các bác giúp em, em đang cần gấp cách giải.Cảm ơn mọi người!!!
Cho tam giác ABC. Một đường tròn tâm O nội tiếp tam giác ABC và tiếp xúc với BC tại D. Đường tròn tâm I là đường tròn bàng tiếp trong góc A của tam giác ABC và tiếp xúc với BC tại F. Vẽ đường kính DE của đường tròn (O). Chứng minh ràng A, E, F thẳng hàng.
Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).
Suy ra
AE’ + AF’ = (AC + CE’) + (AB + BF’)
= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.
Do đó: AE’ = AF’ = p.
Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).
Suy ra
AE’ + AF’ = (AC + CE’) + (AB + BF’)
= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.
Do đó: AE’ = AF’ = p.
Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).
Suy ra
AE’ + AF’ = (AC + CE’) + (AB + BF’)
= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.
Do đó: AE’ = AF’ = p.