cho a,b,c>0.CMR: 4/a+5/b+3/c>=4(3/a+b+2/b+c+1/c+a)
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
giup mình câu này nhé cho a+b+c=0 cmr a^5.(b^2+c^2)+b^5.(a^2+c^2)+c^5.(a^2+b^2)=1/2(a^3+b^3+c^3).(a^4+b^4+c^4)
ai nhanh 10 tick
giúp mình câu này nhé cho a+b+c=0 cmr a^5.(b^2+c^2)+b^5.(a^2+c^2)+c^5.(a^2+b^2)=1/2(a^3+b^3+c^3).(a^4+b^4+c^4)
ai đúng 10 tick
giúp mình câu này nhé cho a+b+c=0 cmr a^5.(b^2+c^2)+b^5.(a^2+c^2)+c^5.(a^2+b^2)=1/2(a^3+b^3+c^3).(a^4+b^4+c^4)
ai nhanh 10 tick
Cho a+b+c=0 CMR
\(a^5.\left(b^2+c^2\right)+b^5.\left(c^2+a^2\right)+c^5.\left(a^2+b^2\right)=\frac{1}{2}.\left(a^3+b^3+c^3\right).\left(a^4+b^4+c^4\right)\)
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
cmr: Với a, b, c > 0 chứng minh rằng 4/a + 5/b + 3/c ≥ 4(3/(a + b) + 2/(b + c) + 1/(c + a))
Ta có:
\(\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\Leftrightarrow\dfrac{3a\left(a+b\right)+3b\left(a+b\right)-12ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{3a^2+3ab+3ab+3b^2-12ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{3a^2+3b^2-6ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\dfrac{3\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng)
Tương tự ta có:
\(\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế (1) (2)(3) ta được:
\(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{12}{a+b}+\dfrac{8}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\)
Cho a,b,c >0 CMR:
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Xét hiệu \(VP-VT=\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)-\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\right)\)
\(=\frac{3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3}{4abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Dễ thấy: \(a;b;c>0\) nên cần chứng minh
\(3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(8a^3+5a^2b+3a^2c-4ab^2-4ac^2-b^3+3b^2c+5bc^2+c^3\right)\left(b-c\right)^2+\frac{1}{2}\left(3a^2c-2a^3-5a^2b+4ab^2+4ac^2+7b^3+3b^2c-5bc^2-c^3\right)\left(c-a\right)^2+\frac{1}{2}\left(2a^3+5a^2b-3a^2c+4ab^2+4ac^2+b^3-3b^2c+5bc^2+9c^3\right)\left(a-b\right)^2\ge0\)
Minh dung phuong phap bieu doi tuong duong thanh tong cac binh phuong do ban nhung cac nay khong hay cho lam.
1.Cho các số nguyên a,b,c thỏa mãn a+b+c=0. CMR:
a) \(a^3+b^3+c^3⋮3abc\)
b)\(a^5+b^5+c^5⋮5abc\)
2.Cho a,b,c là các số nguyên dương sao cho a+1,b+2007 chia hết cho 6.CMR:\(P=4^a+a+b⋮6\)
3.Cho \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abcvớia,b,c\inℤ.CMR:a+b+c⋮4\Rightarrow A⋮4\)