Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Công Hưng
Xem chi tiết
Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 12:34

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)

\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)

=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)

b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)

=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

Phùng Gia Linh
Xem chi tiết
Bùi Mai
Xem chi tiết
Khanh Linh Ha
Xem chi tiết
Xyz OLM
20 tháng 10 2019 lúc 15:30

Theo bài ra ta có : 

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)

\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại) 

Nếu a + b + c + d \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)

=> a = b = c = d (đpcm)

Khách vãng lai đã xóa
Phùng Gia Linh
Xem chi tiết
Đỗ Thị Hoài Đông
26 tháng 9 2018 lúc 20:46

1) Ta có:
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
=>a.(c+d) = c.(a+b)
a.c+a.d = a.c+b.d
Do đó a.d=b.d
=>\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)( đpcm)

Nguyễn Lê Phước Thịnh
6 tháng 9 2022 lúc 14:53

Câu 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)

\(\dfrac{-5a+3c}{-5b+3d}=\dfrac{-5bk+3dk}{-5b+3d}=k\)

=>\(\dfrac{3a+2c}{3b+2d}=\dfrac{-5a+3c}{-5b+3d}\)

b: \(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)

\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{c\left(2c-a\right)}{d\left(2d-b\right)}=\dfrac{dk}{d}\cdot\dfrac{2dk-bk}{2d-b}=k^2\)

=>\(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)

Nguyễn Trọng Bình
Xem chi tiết

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)

Từ (1) và(2) ta có:

\(\dfrac{2a+5b}{2c+5d}\) =  \(\dfrac{3a-2b}{3c-2d}\)(đpcm)

 

 

 

 

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\)  ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

 

 

Dương Hải Dương
Xem chi tiết
Thuy Trang Le
Xem chi tiết