Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Quang Hữu Đức
Xem chi tiết
Kien Nguyen
5 tháng 1 2018 lúc 20:15

Violympic toán 8

nguyễn thảo hân
Xem chi tiết
nguyentancuong
11 tháng 7 2017 lúc 23:36

a/ (x^2-4x+4)+(y^2+2y+1)=0

<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1

b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0 

<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1 

Nguyễn Duy Cường
12 tháng 7 2017 lúc 6:00

a) { x^2 - 4x +4 } +{y^2+2x+1}=0

<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1

b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}

<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.

NHA BẠN!

Nguyễn Thị Bích Thảo
Xem chi tiết
Minh Thư
5 tháng 10 2019 lúc 20:59

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

Minh Thư
5 tháng 10 2019 lúc 21:02

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

Edogawa Conan
5 tháng 10 2019 lúc 21:02

a) 2x2 + y2 + 2xy + 10x + 25 = 0

=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0

=> (x + y)2 + (x + 5)2 = 0 

    <=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)

b)c) xem lại đề

Lê Thị Thanh Huyền
Xem chi tiết
Park Ji Min
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
5 tháng 7 2017 lúc 10:47

Ta có : x2 - 4x + y2 + 2y + 5 = 0

<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0

<=> (x - 2)2 + (y + 1)2 = 0

Mà (x - 2)2 \(\ge0\forall x\)

     (y + 1)2 \(\ge0\forall x\)

Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)

Park Ji Min
6 tháng 7 2017 lúc 11:49

còn 2 bài nữa giúp mik đi

l҉o҉n҉g҉ d҉z҉
12 tháng 8 2020 lúc 21:45

Ok bạn :>

b) x2 + 2y2 + 2xy - 2y + 1 = 0

<=> ( x2 + 2xy + y2 ) + ( y2 - 2y + 1 ) = 0

<=> ( x + y )2 + ( y - 1 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy giá trị của biểu thức = 0 khi x = -1 ; y = 1

c) x2 + 2y2 + 2xy = 2y - 2

<=> x2 + 2y2 + 2xy - 2y + 1 = -1

<=> ( x2 + 2xy + y2 ) + ( y2 - 2y + 1 ) = -1

<=> ( x + y )2 + ( y - 1 )2 = -1 (*)

Ta có : \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

mà -1 < 0

=> (*) sai

=> Không có giá trị x, y thỏa mãn

Khách vãng lai đã xóa
Tống Lê Kim Liên
Xem chi tiết
Kayasari Ryuunosuke
20 tháng 6 2017 lúc 20:31

\(x^2+2y^2+2xy-2y+1=0\)

\(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Trịnh Thành Công
20 tháng 6 2017 lúc 20:30

\(x^2+2y^2+2xy-2y+1=0\)

\(\Rightarrow x^2+2xy+y^2+y^2-2y+1=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

       \(\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\left(1\right)\\y=1\end{cases}}\)

              Từ (1) ta được x=-1;y=1

lê thị thu huyền
20 tháng 6 2017 lúc 20:37

\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\y=1\end{cases}}}\)

vậy x=-1; y=1

Lê Ngọc Linh
Xem chi tiết
FL.Hermit
11 tháng 8 2020 lúc 16:26

Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!

a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)

<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)

<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\)    (1) 

TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)

=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\)      (2)

TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

VẬY \(\left(x;y\right)=\left(3;2\right)\)

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết
rgthaegƯ
Xem chi tiết
Le Nhat Phuong
14 tháng 9 2017 lúc 21:58

rgthaegƯ mk chỉ giải được phần a thui 

  x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0 
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0 
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0 
<=>(x-y+1)^2+(y-1)^2=0 
<=>y=1;x=0

vuighe123_oribe
Xem chi tiết
Trần Tuyết Như
5 tháng 7 2016 lúc 21:45

x2 + 2y2 + 2xy - 2y + 2 = 0

<=>  (x2 + 2xy + y2) + (y2 - 2y + 1) + 1 = 0

<=>  (x + y)2 + (y - 1)2 = -1

*)  (x + y)2  \(\ge\)0   ;    (y - 1)2  \(\ge\)0

=>  (x + y)2 + (y - 1)2  \(\ge\)0

Vậy không tồn tại nghiệm x, y