\(\frac{2}{3}+\frac{4}{21}+\frac{6}{91}+\frac{8}{273}+\frac{3}{504}\)
a)(12+22+32+......+20122).(91-273:3)
b)(-284).172+(-284).(-72)
c)\(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
a) \(\left(1^2+2^2+3^2+....+2012^2\right).\left(91-273:3\right)\)
\(=\left(1^2+2^2+3^2+...+2012^2\right).\left(91-91\right)\)
\(=0\)
b) \(\left(-284\right).172+\left(-284\right).\left(-72\right)=\left(-284\right).\left(172+-72\right)\)
\(=\left(-284\right).100\)
\(=-28400\)
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
\(=\left(\frac{1}{5}+\frac{-1}{5}\right)+\left(\frac{1}{6}+\frac{-1}{6}\right)+\left(\frac{1}{7}+\frac{-1}{7}\right)+\left(\frac{1}{8}+\frac{-1}{8}\right)+\frac{1}{9}\)
\(=0+0+0+0+\frac{1}{19}\)
= 0
a) \(\left(1^2+2^2+3^2+...+2012^2\right).\left(91-273:3\right)\)
= \(\left(1^2+2^2+3^2+...+2012^2\right).0\)
= \(0\)
b) (-284) . 172 + (-284) . (-72)
= (-284) . [172 + (-72)]
= (-284) . 100
= -28400
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
= \(\frac{1}{9}\)
Thực hiện phép tính:
a) ( 12 + 22 + ... + 20122)(91 - 273:3)
c) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
\(\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...............+\frac{91}{90}+\frac{111}{110}\)
Gọi tổng dãy số hạng trên là A
A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)
Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số
A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)- \(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\)
A = 10 + \(\frac{1}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{11}\)= \(\frac{112}{11}\)
Tính.
a) $\frac{4}{{25}}:\frac{4}{3}$
b) $\frac{3}{{14}}:\frac{6}{7}$
c) $\frac{{12}}{{15}}:2$
d) $\frac{{21}}{8}:6$
a) $\frac{4}{{25}}:\frac{4}{3} = \frac{4}{{25}} \times \frac{3}{4} = \frac{3}{{25}}$
b) $\frac{3}{{14}}:\frac{6}{7} = \frac{3}{{14}} \times \frac{7}{6} = \frac{{3 \times 7}}{{14 \times 6}} = \frac{{3 \times 7}}{{7 \times 2 \times 3 \times 2}} = \frac{1}{4}$
c) $\frac{{12}}{{15}}:2 = \frac{{12}}{{15}} \times \frac{1}{2} = \frac{{12 \times 1}}{{15 \times 2}} = \frac{{6 \times 2 \times 1}}{{15 \times 2}} = \frac{6}{{15}}$
d) $\frac{{21}}{8}:6 = \frac{{21}}{8} \times \frac{1}{6} = \frac{{21 \times 1}}{{8 \times 6}} = \frac{{7 \times 3 \times 1}}{{8 \times 3 \times 2}} = \frac{7}{{16}}$
1. Tính nhanh
a, \(\frac{7}{13}.\frac{7}{15}-\frac{5}{12}.\frac{21}{39}+\frac{49}{91}.\frac{8}{15}\)
b, \(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
c,\(\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
Tính nhanh (nếu có thể):
\(a,\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}+\frac{-0,25.\frac{-2}{3}-75\%:(\frac{-1}{2}+\frac{2}{3})}{|-1\frac{1}{2}|.(\frac{-2}{3}-0,75:\frac{3}{-2})}\)
\(b,A=158.(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}).\frac{50550505}{711711711}\)
a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{-\dfrac{1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}\)
\(=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
b: \(A=158\left(\dfrac{12\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}\right)\cdot\dfrac{50550505}{711711711}\)
\(=158\cdot\left(3\cdot\dfrac{6}{5}\right)\cdot\dfrac{50550505}{711711711}\)
\(\simeq40.39\)
Tính nhanh (nếu có thể):
\(a,\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}+\frac{-0,25.\frac{-2}{3}-75\%:(\frac{-1}{2}+\frac{2}{3})}{|-1\frac{1}{2}|.(\frac{-2}{3}-0,75:\frac{3}{-2})}\)
\(b,A=158.(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}).\frac{50550505}{711711711}\)
Tính nhanh:
a,\(\frac{7}{13}\cdot\frac{7}{15}-\frac{5}{12}\cdot\frac{21}{39}+\frac{49}{91}\cdot\frac{8}{15}\)
b,\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
Thục hiện phép tính
a) A = \(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
b) B = \(81.\left(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right).\frac{158158158}{711711711}\)
a,
A = 5.(22 . 32 )9. (22)6 - 2. (22.3)14.34 / 5.228.318 - 7.229.318
A = 5.218.318.212 - 2. 228. 314. 34 / 5. 228. 318 - 7. 229. 318
A = 5.230.318 - 229. 318 / 5.2 28.318 - 7.229. 318
A = 229. 318(5.2-1) / 228. 318 (5 -7.2)
A = 2.9 / -9 = -2
Vậy A = -2
b,
B =81.( 12 - 12/7- 12/289 - 12/85 / 4 - 4/7 - 4/289 - 4/85 :
5 + 5/13 + 5/169 + 5/91 / 6 + 6/13 + 6/169 + 5/91 ) x 158158158
B = 81.[ 12.( 1 - 1/7 - 1/289 - 1/85) / 4.( 1 - 1/7 - 1/289 - 1/85 :
5.(1 + 1/13 + 1/169 + 1/91) / 6.(1+ 1/13 +1/169 + 1/91)] . 2/9
B = 81.[ 3 : 5/6 ] .2/9
B = 81.18/5 . 2/9
B = 1458/5 . 2/9
B = 324/5.
Vậy B = 324/5
CHÚC HỌC TỐT