Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thị Minh Huyền
Xem chi tiết
duc
5 tháng 8 2021 lúc 9:20

Bn ế r, 2018 đến h mà ko cs ai tl

Khách vãng lai đã xóa

nhưng mà câu hỏi đc cập nhật 4 phút trước mà !

Khách vãng lai đã xóa
Trà Nhật Đông
Xem chi tiết
Nguyễn Nhị Hà
Xem chi tiết
bin sky
Xem chi tiết
Akai Haruma
22 tháng 7 2021 lúc 17:54

Lời giải:
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{x(x+1)}{2}}\)

\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}\right)\)

\(=1+2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\right)\)

\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)

\(=1+2(\frac{1}{2}-\frac{1}{x+1})=2-\frac{2}{x+1}\)

Ta có: $2-\frac{2}{x+1}=2$

$\Leftrightarrow \frac{2}{x+1}=0$ (vô lý)

Vậy không tồn tại $x$ nguyên dương thỏa mãn.

 

 

Duong Ca
Xem chi tiết
Trân Duy Tri
29 tháng 10 2017 lúc 11:29

1:đáp án là 3

2:đáp án lần lượt là

x = 5

a = 3

b = 4

Hoàng Việt Anh
Xem chi tiết
Lê Thị Minh Hằng
Xem chi tiết
Nguyễn Thu Hòa
Xem chi tiết
.
Xem chi tiết
Xyz OLM
30 tháng 8 2020 lúc 15:32

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)

=> \(1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)

=> \(1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)

=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)

=> \(\frac{1}{x+1}=0\Rightarrow x\in\varnothing\)

Khách vãng lai đã xóa
Bellion
16 tháng 9 2020 lúc 19:02

            Bài làm :

Ta có :

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+x}=2\)

 \(\Leftrightarrow1+\frac{1}{\frac{2\left(1+2\right)}{2}}+\frac{1}{\frac{3\left(1+3\right)}{2}}+....+\frac{1}{\frac{x\left(x+1\right)}{2}}=2\)

 \(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\)

 \(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\)

 \(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}\)

 \(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}\)

 \(\Leftrightarrow\frac{1}{x+1}=0\)

=> Không tồn tại x

Khách vãng lai đã xóa