Bài 4. Tìm các số tự nhiên a; b; c thỏa mãn cả hai điều kiện 31 < a < b và 35 > c > b.
Bài 1: Tìm 2 số lẽ liên tiếp có tổng là 1444?
Bài 2: Tìm 2 số tự nhiên liên tiếp có tổng là 215?
Bài 3: Tìm số tự nhiên A; biết A lớn hơn TBC của A và các số 38; 42; 67 là 9 đơn vị?
Bài 4: Tìm số tự nhiên B; biết B lớn hơn TBC của B và các số 98; 125 là 19 đơn vị?
Bài 5: Tìm số tự nhiên C; biết C bé hơn TBC của C và các số 68; 72; 99 là 14 đơn vị?
Bài 6: Tìm 2 số tự nhiên biết số lớn chia cho số bé được thương là 3 dư 41 và tổng của hai số đó là 425?
Bài 7: Tìm 2 số tự nhiên biết số lớn chia cho số bé được thương là 2 dư 9 và hiệu của hai số đó là 57?
Bài 8: Tìm 2 số biết thương của chúng bằng hiệu của chúng và bằng 1,25?
Bài 9: Tìm 2 số có tổng của chúng bằng 280 và thương chúng là 0,6?
Bài 10: Tìm hai số tự nhiên có tổng là 2013 và giữa chúng có 20 số tự nhiên khác?
Bài 1: Tìm 2 số lẽ liên tiếp có tổng là 1444?
Số bé là: 1444 : 2 – 1 = 721
Số lớn là: 721 + 2 = 723
Bài 2: Tìm 2 số tự nhiên liên tiếp có tổng là 215?
Số bé là: (215 – 1) : 2 = 107
Số lớn là: 215 – 107 = 108
Bài 3: Tìm số tự nhiên A; biết A lớn hơn TBC của A và các số 38; 42; 67 là 9 đơn vị?
TBC của 4 số là: (38 + 42 + 67 + 9) : 3 = 52 .
Vậy A là: 52 + 9 = 61
Bài 4: Tìm số tự nhiên B; biết B lớn hơn TBC của B và các số 98; 125 là 19 đơn vị?
TBC của 3 số là: (98 + 125 + 19) : 2 = 121 .
Vậy B là: 121 + 19 = 140
Bài 5: Tìm số tự nhiên C; biết C bé hơn TBC của C và các số 68; 72; 99 là 14 đơn vị?
TBC của 3 số là: [(68 + 72 + 99) – 14] : 3 = 75
Vậy C là: 75 – 14 = 61
Bài 6: Tìm 2 số tự nhiên biết số lớn chia cho số bé được thương là 3 dư 41 và tổng của hai số đó là 425?
- Ta có số bé bằng 1 phần; số lớn 3 phần (số thương)
Tổng số phần: 3 + 1 = 4
- Số bé = (Tổng - số dư) : số phần
Số bé là: (425 - 41) : 4 = 96
- Số lớn = Số bé x Thương + số dư
Số lớn là: 96 x 3 + 41 = 329
Bài 7: Tìm 2 số tự nhiên biết số lớn chia cho số bé được thương là 2 dư 9 và hiệu của hai số đó là 57?
- Ta có số bé bằng 1 phần; số lớn 2 phần (số thương)
Hiệu số phần: 2 -1 = 1
- Số bé = (Hiệu - số dư) : số phần
Số bé là: (57 - 9) : 1 = 48
- Số lớn = Số bé x Thương + số dư
Số lớn là: 48 x 2 + 9 = 105
Bài 8: Tìm 2 số biết thương của chúng bằng hiệu của chúng và bằng 1,25?
- Đổi số thương ra phân số thập phân, rút gọn tối giản.
Đổi 1,25 = 125/100 = 5/4
- Vậy số bé = 4 phần, số lớn 5 phần (Toán hiệu tỉ)
Hiệu số phần: 5 - 4 = 1
- Số lớn = (Hiệu : hiệu số phần ) x phần số lớn
Số lớn: (1,25 : 1) x 5 = 6,25
- Số bé = Số lớn - hiệu
Số bé: 6,25 - 1,25 = 5
Bài 9: Tìm 2 số có tổng của chúng bằng 280 và thương chúng là 0,6?
Đổi số thương ra phân số thập phân, rút gọn tối giản
Đổi 0,6 = 6/10 = 3/5
- Vậy số bé = 3 phần, số lớn 5 phần (Toán tổng tỉ)
Tổng số phần: 5 + 3 = 8
- Số lớn = (Tổng : tổng số phần) x phần số lớn
Số lớn: (280 : 8) x 5 = 175
- Số bé = Tổng - số lớn
Số bé : 280 - 175 = 105
Bài 10: Tìm hai số tự nhiên có tổng là 2013 và giữa chúng có 20 số tự nhiên khác?
- Hiệu của 2 số đó là: 20 x 1 + 1 = 21
- Số lớn: (2013 + 21) : 2 = 1017
- Số bé: 2013 - 1017 = 996
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
Bài 5. Một số bài tập khác 1. Cho A=4+4^2+4^3+...+4^23+4^24 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 . 2. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau: a) n + 2 và n + 3 b) 2n + 1 và 9n + 4. 3. Tìm các số tự nhiên a, b biết: a) a + b = 192 và ƯCLN(a, b) = 24. b) 0 < a < b, a + b = 42 và BCNN(a, b) = 72. 4. Tìm số tự nhiên nhỏ nhất sao cho số đó chia 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4. 5. 5.1. Tìm số nguyên x, biết: a) 2x – 1 là bội của x – 3; b) 2x + 1 là ước của 3x + 2. 5.2. Tìm số nguyên x, y sao cho: a) (2x – 1)(y 2 + 1) = -17; b) (3 – x)(5 - y) = 2; c) x.y = 18; x + y = 11.
Giúp e vs ak, e đang cần gấp. PLS!
Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
Bài 1: Tìm các số tự nhiên x; y sao cho 2xy - 5x + 7y - 4 = 0.
Bài 2: Tìm các số tự nhiên x; y sao cho 2xy + x = 5y.
Bài 1: tìm chữ số tận cùng của các tích sau:
1x3x5x7x........x57x59.
2x12x22x.....82x92.
39x49x59x.....1979x1989.
Bài 2: tìm 4 số tự nhiên liên tiếp có tích bằng 93 024
Bài 3: tổng của một số tự nhiên và các chữ số của nó bằng 2359.Tìm số tự nhiên đó.
a, Chữ số tận cùng là 5 vì trong 1 tích chỉ cần có 1 thừa số 5 thì tích đó có chữ số tận cùng là 5 ( trừ có số 0 ra nha )
b , Chữ số tận cùng là 4 vì cứ 4 thừa số ghép lại cho ta 1 tích có chữ số tận cùng là 6 VD : ( 2 x 12 x 22 x 32 ) x ( 42 x 52 x 62 x 72 ) và dư ra 82 x 92 . Các tích kia có tận cùng là 6 nên nhân lại vẫn ra số có tận cùng là 6 x 2 x 2 = 24 => có chữ số 4 tận cùng
c , Lm tương tự ( ghép 2 số để ra số 1 nếu k dư thì ra 1 nha )
giúp mình giải hai bài nàu nha
bài 1.tìm 4 số tự nhiên liên tiếp có tíc bằng 255024
bài 2.tìm số tự nhiên a và b sao cho (a+b)x(a-b)=2010
làm ơn giúp mình với,mai lại phải nộp bài rồi.nhanh nhé.cảm ơn các bạn
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Bài 1: Tìm phân số tối giản lớn nhất để khi chia cho các phân số 78/595;195/476;273/680 đều được số tự nhiên?
Bài 2: Tích của 4 số tự nhiên liên tiếp là 93024 . Tìm 4 số đó?
Bài 1: số trong lớp không lớn hơn 30 hỏi có thể là bao nhiêu biết rằng khi xếp hàng 3 thì dư 2 bàn khi xếp hàng 5 thì dư 1 bàn
Bài 2:Tìm số tự nhiên a nhỏ nhất biết rằng số đó chia cho 3,4,5 dư 1 và chia hết cho 11
Bài 3: Tìm số tự nhiên a và b a<b biết rằng BCNN(a,b)+ƯCLN(a,b)=19 BCNN(a,b)-ƯCLN(a,b)=3
Bài 4: Tìm số tự nhiên a,b,c biết 16a=25b=30c. a,b,c là các số tự nhiên nhỏ nhất khác 0