Cho tam giác ABC có 3 đường phân giác AD,BE,CF cắt nhau tại I
Chứng minh : \(\frac{IA}{ID}\)=\(\frac{AB+AC}{BC}\)
Cho tam giác ABC có 3 đường phân giác AD,BE,CF cắt nhau tại I
Chứng minh : \(\frac{IA}{ID}\)=\(\frac{AB+AC}{BC}\)
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
Tam giác ABC các đường phân giác AD,BE,CF cắt nhau tại I.CMR: ID/AD=BC/AB+BC+AC (ID/AD+IE/BE+IF/CF=1)
Cho tam giác ABC có ba đường trung tuyến AD, BE, CF cắt nhau tại G. Chứng minh rằng:
\(\frac{3}{4}\)(AB+BC+AC) < AD+BE+CF < AB+BC+AC
Cho tam giác ABC, trên các cạnh BC, CA, AB lần lượt lấy các điểm D, E, F (khác các đỉnh của tam giác) sao cho AD, BE, CF cắt nhau tại I. Chứng minh rằng:
\(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)
\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)
\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
Cho tam giác ABC, trên các cạnh BC, CA, AB lần lượt lấy các điểm D, E, F (khác các đỉnh của tam giác) sao cho AD, BE, CF cắt nhau tại I. Chứng minh rằng:
\(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)
=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)
(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)
=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)
=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)
=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)
Áp dụng BĐT coosshi cho 2 số dương ,ta có:
\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)
vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)
cho tam giác ABC có 3 góc nhọn . các đường cao AD,BE,CF cắt nhau tại H
chứng minh rằng \(\frac{AH}{BC}+\frac{BH}{AC}+\frac{CH}{AB}>=\sqrt{3}\)
tam giác nhọn ABC (AB<AC) có đường cao AD, BE, CF. BE cắt đường thẳng BC tại I, IA cắt (O) tại N. Chứng minh HN vuông góc với AI
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn O(AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H. EF cắt BC tại M và cắt AD tại I, AM cắt (O) tại N. Chứng minh NI là phân giác của góc END.