Cho B =(\(\frac{1}{4}\)-1)(\(\frac{1}{9}\)-1)...(\(\frac{1}{100}\)-1).So sánh B với -\(\frac{11}{21}\)
Cho B=\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right).....\left(\frac{1}{100}-1\right)\)So sánh B với \(\frac{-11}{21}\)
Mong các bạn giúp mình nhé
B = \(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)
B = \(\frac{-3}{4}.\frac{-8}{9}...\frac{-99}{100}\)
B = \(-\left(\frac{3}{4}.\frac{8}{9}...\frac{99}{100}\right)\)
B = \(-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)
B = \(-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)
B = \(-\left(\frac{1}{10}.\frac{11}{2}\right)\)
B = \(\frac{-11}{20}\)
Vì \(\frac{11}{20}>\frac{11}{21}\)nên \(\frac{-11}{20}< \frac{-11}{21}\)
Vậy \(B< \frac{-11}{21}\)
Cho B=\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
So sánh B với 11/21
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)
\(B=\frac{1}{10}.\frac{11}{2}\)
\(B=\frac{11}{20}>\frac{11}{21}\)
Cho A=(\(\frac{1}{2}\) -1)(\(\frac{1}{3}\) -1)......(\(\frac{1}{10}\) -1). So sánh A với \(\frac{-1}{9}\)
Cho B=(\(\frac{1}{4}\) -1)(\(\frac{1}{9}\) -1)....(\(\frac{1}{100}\) -1). So sánh B với \(\frac{-11}{21}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot...\left(\frac{1}{10}-1\right)\)
\(A=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\cdot...\cdot\left(\frac{1}{10}-\frac{10}{10}\right)\)
\(A=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{9}{10}\right)\)
\(A=\frac{-1}{2}\cdot\frac{-2}{3}\cdot...\cdot\frac{-9}{10}\)
\(A=\frac{\left(-1\right)\cdot\left(-2\right)\cdot...\cdot\left(-9\right)}{2\cdot3\cdot...\cdot10}\)
\(A=\frac{\left(-1\right)\cdot2\cdot...\cdot9}{2\cdot3\cdot...\cdot10}=\frac{-1}{10}\)
Mà \(\frac{-1}{10}>\frac{-1}{9}\)nên A > -1/9
Phần cuối tương tự
cho B =\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{81}-1\right)\left(\frac{1}{100}-1\right)\)
So sánh B với\(\frac{-11}{21}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
= \(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)
=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)
Bài 1 : cho 2 biểu thức
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
So sánh A với \(\frac{1}{21}\)
So sánh B với \(\frac{11}{21}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
Cho A=(\(\frac{1}{2}\) -1)(\(\frac{1}{3}\) -1)......(\(\frac{1}{10}\) -1). So sánh A với \(\frac{-1}{9}\)
Cho B=(\(\frac{1}{4}\) -1)(\(\frac{1}{9}\) -1)....(\(\frac{1}{100}\) -1). So sánh B với \(\frac{-11}{21}\)
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)
AI GIẢI GIÚP MK BÀI NÀY VỚI. AI XONG NHANH NHẤT, GIẢI RÕ RÀNG NHẤT THÌ MK TICK CHO..!!!
CHO : \(B=\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{9}\right)\cdot\left(1-\frac{1}{19}\right)\cdot...\cdot\left(1-\frac{1}{81}\right)\cdot\left(1-\frac{1}{100}\right)\)
SO SÁNH B VỚI \(\frac{11}{19}\)