cho các số nguyên a,b,c,d có a< 2b ; b<3c ; c<4d và d< 100 .
Tìm giá trị lớn nhất có thể của a.
làm giùm mk nha, làm nhanh làm đúng sẽ tick ( giải cụ thể nha )
Cho các số nguyên a, b ,c , d có a < 2b, b < 3c, c < 4d và d < 100. Tìm giá trị lớn nhất có thể của a
cho hỏi: có bốn số nguyên a,b,c,d sao cho : 2b=a+c ; 2c=b+d và c^2+d^2
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Nếu 50x^2 + 25x-3 = (Ax+B)(Cx+D) và D = -1 khi A,B,C là các số nguyên thì P = (C/A - B).D^2017 = ?
Cho a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c-2d=2; 4a-2b-3c+d=3; 8a+b-6c+d=4 thì giá trị của a+b+c+d là bao nhiêu?
mình có nick sv1 nè lấy o
tk:mnmn@vk.ck
mt:aaaa hoặc cccc
mẹ ơi cái này chủ yếu để hỏi nick chứ hok hành cái méo j
cho f(x)= ax3+bx2+cx+d
a, Chứng minh nếu f(x) nhận giá trị nguyên với ,ọi x nguyên thì 6a, 2b, a+b+c, d đều là số nguyên
b Chứng minh rằng nếu 6a, 2b, a+b+c, d là các số nguyên thì f(x) nhân giá trị nguyên với mọi x nguyên
cho nói lại: có bốn số nguyên a,b,c,d sao cho : 2b=a+c ; 2c=b+d và c^2+d^2. Tìm a? biet b=2
cho các số nguyên a,b,c,d thoả mãn a<2b+1,b<3c+1,c<4d+1 và d<2021. Tìm giá trị lớn nhất có thể của a.
AI NHANH MÌNH TICK CHO NHA!
SAI HAY ĐÚNG CŨNG ĐC NHÉ!
cho các số nguyên a,b,c,d biết a<2b ;b<3c ;c<4d :d,5 Tìm giá trị lớn nhất của a
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
Cho 140 = a2b. 7 với a, b là các số nguyên tố. Khi đó a + 2b =?
A. 12 B. 14 C. 7 D. 9
gấp ạaa
140 = 2².5.7
⇒ a = 2; b = 5
⇒ a + 2b = 2 + 2.5 = 12
Chọn A