tìm giá trị nhỏ nhất
2x^2+2y^2-2xy+4x+4y+10
tìm giá trị nhỏ nhất của A = x^2+2y^2+4y+2xy-4x+2019
Do A nhỏ nhất
Suy ra : x^2 = 0, 2y^2 = 0 , 4y = 0 .......( tất cả số hạng bằng 0)
Suy ra A= 2019
\(A=x^2+2y^2+4y+2xy-4x+2019\)
\(A=\left(x^2+y^2-2^2+2xy-4y-4x\right)+\left(y^2+8y+4^2\right)+2007\)
\(A=\left(x+y-2\right)^2+\left(y+4\right)^2+2007\ge2007\)
Vậy \(Min_A=2007\) khi \(\hept{\begin{cases}x+y-2=0\\y+4=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-4\end{cases}}\hept{\begin{cases}x=6\\y=4\end{cases}}\)
Tìm giá trị nhỏ nhất của x^2 + 2y^2 +2xy+2x-4y+2016
Tìm giá trị nhỏ nhất của biểu thức: \(A=x^2+2y^2+2xy+2x-4y+2028\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
Tìm giá trị nhỏ nhất
x2-2x-2xy-2xy+2y2+2x-4y2x-4y+30
Tìm giá trị nhỏ nhất của:
C=2x^2-2xy+2y^2+4y-1
tìm giá trị nhỏ nhất của
A= x2 +y2_2x+4y+1
B= x2+2y2+2xy+2xy-2x-4y
Ta có : \(x^2+y^2-2x+4y+1\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)
\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)
Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)
Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)
Vậy \(A_{min}=-4\) khi x = 1 và y = -2
Tìm giá trị nhỏ nhất :
E=x2+y2 -4x -2y +2003
F=x (x+1)(x+2)(x+3)
P= x2 +20y +3xy -4y +2008
H= 2x^2 +y^2 -2xy+2x-4y +2016
\(E=x^2+y^2-4x-2y+2003\)
\(= \left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1998\) \(=\left(x-2\right)^2+\left(y-1\right)^2+1998\ge1998\)
Vậy: Min E = 1998 khi \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(F=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)\(=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=\left(x^2+3x\right)\left(x^2+3x+2\right)\) (1)
Đặt: \(x^2+3x=t\) \(\Rightarrow x^2+3x+2=t+2\) thay vào phương trình (1) ta có:
\(t\left(t+2\right)=t^2+2t=t^2+2t+1-1=\left(t+1\right)^2-1\) \(=\left(x^2+3x+1\right)^2-1\ge-1\)
Vậy: Min F = -1 khi x=1
tìm giá trị nhỏ nhất của biểu thức :
a, A=2x^2+y^2+2xy-6x-2y+8
b, B=3x^2+4y^2-4xy+6x-4y+11
Cho x,y thỏa mãn: x2+2xy+4x+4y+2y2+3=0
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Q=x+y+2018
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
giá trị lớn nhất là 2017