CMR:3n+3+3n+1+2n+3+2n+2chia hết cho 6
CMR:
3^n+3 + 2^n+3 + 3^n+1 + 2^n+2 chia hết cho 6
7^n+4-7^n chia hết cho 30
6^2n + 3^n+2+3^n chia hết cho 11
25^7 + 5^13 chia hết cho 30
3n+2-2n+2+3n-2n
= ( 3n+2+3n)-(2n+2+2n)
= 3n(32+1)-2n(22+1)
= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10
b) 7n+4-7n=7n(74-1)=7n.2400
Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30
Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N
c) 62n+3n+2+3n=22n.3n+3n(32+1)
=22n.32n+3n.11 chia het cho 11
đ) câu hỏi tương tự nhé
l-i-k-e mình nhé
CMR A= 3^n+3 + 3^n+3 - 3^n+2 + 3^n+2 chia hết cho 6 ( n thuộc N*)
CMR B= 3^n+2 + 3^n - 2^n+2 - 2^ chia hết cho 10 ( n thuộc N*)
1)
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
2)
Bạn làm tương tự nha!
CMR:
a)8^7-2^18 chia hết cho 14
b)10^6-5^7 chia hết cho 59
c)313^5*299-313^6*35 chia hết cho 7
d)3^n+2-2^n+2+3^n-2^n chia hết cho 10
e)3^n+3+2^n+3+3^n+1+2^n+2 chia hết cho 6
f)7^6+7^5-7^4 chia hết cho 11
Cmr với mọi số nguyên dương thì :
a,3^n+2 - 3^n - 2^n chia hết cho 10
b,3^n+3 + 3^n+1 + 2^n+3 + 2^n+2 chia hết cho 6
cmr 3^n+3 + 3^n+1 + 2^n+3 + 2+ 2^n+1 chia hết cho 6
Cho n € N. CMR:
1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7
2) n(n^2-1)(3n+3) chia hết cho 12
3) n(n+1)(2n+1) chia hết cho 6
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
2)Đề sai. Sửa:
\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.
\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)
Vậy ....
1)CMR với mọi n thuộc N* thì
\(3^{n+3}+2^{n+2}-3^{n+2}+2^{n+2}\)chia hết cho 6
2)CMR
\(A=4+2^2+2^3+2^4+....+2^{20}\)chia hết cho 128
3)CMR
\(2^{2^n}-1\)chia hết cho 5(n thuộc , n>=2)
4)CMR
\(2^{4^n}+4\)chia hết cho 10( n thuộc N, n>=1)
5)CMR:
\(9^{2^n}+3\)chia hết cho 2 ( n thuộc N, n>=1)
giúp mình với mình đag cần gấp lắm ạ
c.ơn mấy bạn nhiều nhé
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.
CMR : Với n thuộc N sao
a) A=\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
CMR : A chia hết cho 10
b) B=\(\left(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\right)\)
CMR : B chia hết cho 6
1. CMR:
a) D = \(6+6^2+6^3+......+6^{99}+6^{100}\) chia hết cho 7
b) E = \(3^{n+3}+2^{n+3^{ }}+3^{n+1}+2^{n+2}\) chia hết cho 6
Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .
=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )
Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )
\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)
\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)
\(D=1.42+6^2.42+...+6^{98}.42\)
\(D=\left(1+6^2+...+6^{98}\right).42\)
Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)
Vậy : \(D⋮7\)
b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)
\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)
\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(E=3^n.30+2^n.12\)
\(E=3^n.5.6+2^n.2.6\)
\(E=\left(3^n.5+2^n.2\right).6\)
Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)
Vậy : \(E⋮6\)
a)D=6+62+63+...+699+6100
D=(6+62)+(63+64)+...+(699+6100)
D=42.1+62..42+...+698.42
D=42.(1+62+...+698)\(⋮\)7
\(\Rightarrow\)D\(⋮\)7
\(6D=6^2+6^3+...+6^{101}\)
\(\Rightarrow5D=6D-D=6^{101}-6=6\left(6^{100}-1\right)\)
Ta chứng minh được \(6^{100}-1\) chia hết cho 7
Cụ thể là 6 đồng dư với \(-1\left(mod7\right)\Rightarrow6^{100}\) đồng dư với \(\left(-1\right)^{100}=1\left(mod7\right)\)
\(\Rightarrow6^{100}-1\) chia hết cho 7
Vậy \(5D\) chia hết cho 7 mà \(UCLN\left(5;7\right)=1\) suy ra D chia hết 7