\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
$\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}$
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+3^{10}.2^{12}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.6}{6^{12}-6^{11}}=\frac{2^{12}.3^{10}.6}{6^{11}\left(6-1\right)}=\frac{2^{10}.3^{10}\left(2^2+1\right).6}{6^{11}.5}=\frac{6^{11}.5}{6^{11}.5}=1\)
\(\frac{4^6.9^5^+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\frac{4^6.9^5+6^9.120}{-6^{11}-8^4.3^{12}}\)
Cho mình hỏi chỗ -611 là -611 hay (-6)11
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}.10\)
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}.10=\frac{2^{12}.3^{10}+2^9.3^9.120}{2^{12}.3^{12}-2^{11}.3^{11}}.10=\frac{2^{10}.3^{10}\left(2^2+20\right)}{2^{10}.3^{10}\left(6^2-6\right)}.10=\frac{24.10}{30}=8\)
Tính \(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^{10}\cdot2^{12}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=-\dfrac{3^{10}\cdot2^{12}\cdot6}{2^{11}\cdot3^{11}\cdot7}=-\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{-12}{21}=-\dfrac{4}{7}\)
\(B=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot5\cdot3}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}\)\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{4}{5}\)
\(B=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(B=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(B=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(B=\frac{2^{11}.3^{10}.\left(2+2.5\right)}{2^{11}.3^{10}.\left(2.3^2-3\right)}\)
\(B=\frac{2+2.5}{2.3^2-3}\)
\(B=\frac{4}{5}\)
\(10.\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
10.46.95+69.120 :; 84.312-611
TÍnh \(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
Tính
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot5}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)