CMR: \(\sqrt{2\sqrt{3\sqrt{4\sqrt{.....\sqrt{2000}}}}}< 3\)
CMR: \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3\)
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.4}< 3\)
cmr: \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3.\)
Ta có:
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{2000.2002}}}}\)
\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2001^2-1}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)
\(........................................\)
\(< \sqrt{2.4}=\sqrt{8}< 3\)
Ta có:
√2√3√4...√2000
<√2√3√4...√2000.2002
=√2√3√4...√1999√20012−1
<√2√3√4...√1999.2001
........................................
<√2.4=√8<3
CMR \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}< 3}\)
#)Giải :
\(2012\sqrt{2013}< 2013^2\Rightarrow\sqrt{2011\sqrt{2012\sqrt{2013}}}< \sqrt{2011.2013}< 2012\)
Thực hiện nhiều lần ta được vế trái \(< \sqrt{2\sqrt{3.5}}< \sqrt{8}< 3\)
\(\Rightarrow\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3\left(đpcm\right)\)
CMR:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5...\sqrt{2000}}}}}\)<3
Anh em giup nha. CMR:
\(\sqrt{2\sqrt{ }3\sqrt{ }4...\sqrt{ }2000}< 3\)
CMR : \(\sqrt{2\sqrt{3\sqrt{4\:...\:\sqrt{2000}}}}\)< 3
Chỉ giúp mình với , mk cảm ơn
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
CMR:
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}=1+\sqrt{2}\)
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)+\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{4}+\sqrt{2}.\sqrt{5}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)\left(1+\sqrt{2}\right)}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=1+\sqrt{2}\)
⇒ ĐPCM
c/m:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6\sqrt{7\sqrt{8.....\sqrt{1999\sqrt{2000}}}}}}}}}< 3\)
Có cách giải nhưng t ko chắc đâu nhá;) đã bảo đưa dạng a, b, c rồi mà cứ đưa dạng này-_-
\(VT< \sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6....}}}}}=x>0\) (vô hạn dấu căn). Ta sẽ chứng minh x < 3
Ta thấy \(x^2=\sqrt{2}.x\Rightarrow x\left(x-\sqrt{2}\right)=0\Rightarrow x=\sqrt{2}< 3\Rightarrow\text{đpcm }\)
\(x^2=2\sqrt{3\sqrt{4\sqrt{5....\sqrt{2000}}}}ma?\)
link tha khảo
link : https://olm.vn/hoi-dap/detail/69408192260.html
hok tốt