Xác định độ phức tạp thời gian cho chương trình sau:
n = 1000
s = 0
for i in range (n);
s = s + i*(i+1)
print (s)
Cho biết hàm sau sẽ trả về giá trị là bao nhiêu? Xác định độ phức tạp thời gian O- lớn của chương trình.
def Mystery(n):
r=0
for i in range(n-1):
for j in range(i+1,n):
for k in range(1,j):
r=r+1
return r
Tham khảo:
Hàm "Mystery(n)" sẽ trả về giá trị là r.
Độ phức tạp thời gian của chương trình này là O(n3)
Xác định độ phức tạp thời gian tính toán cho chương trình sau:
n = 1000
sum = 0
i = 1while i <n;
i = i*2
sum = sum + 1
print (sum)
Chương trình trên tính số lần lặp cần thiết để i lớn hơn n bằng cách nhân i với 2 trong mỗi lần lặp, sau đó tăng biến sum lên 1. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng while và các phép toán trong vòng lặp.
Vòng while: Vòng lặp này chạy cho đến khi i >= n, và giá trị ban đầu của i là 1. Trong mỗi lần lặp, i được nhân với 2, vậy số lần lặp là log2(n) (vì sau mỗi lần nhân i với 2, giá trị của i sẽ gấp đôi). Ví dụ, nếu n = 1000 thì số lần lặp là log2(1000) ≈ 10.
Các phép toán trong vòng lặp:
Phép gán i = i * 2: Đây là phép nhân, có độ phức tạp là O(1).
Phép gán sum = sum + 1: Đây là phép gán giá trị vào biến sum, có độ phức tạp là O(1).
Vậy tổng độ phức tạp thời gian của chương trình là O(log n), hay O(log2(1000)) ≈ O(10)
Hãy cho biết hàm sau thực hiện công việc gì? Xác định độ phức tạp thời gian của thuật toán.
def func(A):
n=len(A)
for i in range(n-1):
for j in range(i+1,n):
if A[j] > A[j]:
A[j],A[j] = A[j],A[i]
Công việc của hàm là thực hiện sắp xếp.
Độ phức tạp của thuật toán là O(n2)
Xác định độ phức tạp của thuật toán sắp xếp nổi bọt sau:
def BubbleSort(A):
n = len(A)for i in range(n-1):
for j in range(n-1-i):
if A[j] > A[j+1]:
A[j],A[j+1] = A[j+1]1,A[j]
Độ phức tạp của thuật toán sắp xếp nổi bọt là O(n2)
T = O(n) + O(n2) = O(n2)
Chọn phát biểu đúng về chương trình dưới đây ?
m=0; n=0
for i in range(1,1000):
if i%3==0:
m=m+1
if (i%3==0)&(i%5==0):
n=n+1
print(m,n)
A. Đây là chương trình đếm các số nguyên trong khoảng từ 1 đến 1000 là bội số của 3
B. Đây là chương trình đếm và thông báo ra màn hình rằng trong khoảng từ 1 đến 999 có bao nhiêu số nguyên là bội số của 3 và có bao nhiêu số là bội số chung của 3 và 5
C. Đây là chương trình đếm các số nguyên trong khoảng từ 1 đến 1000 là bội số của 3 và 5
D. Đây là chương trình đếm các số nguyên nhỏ hơn 1000 và chia hết cho 3
Chọn đáp án A
A. Đây là chương trình đếm các số nguyên trong khoảng từ 1 đến 1000 là bội số của 3
Em hãy thiết lập chương trình và tính thời gian chạy thực tế trên máy tính của các chương trình 1 và 2 ở Hình 24.2 với các giá trị n khác nhau từ đó thấy được ý nghĩa sự khác biệt độ phức tạp thời gian của hai chương trình này.
*Chương trình 1:
from collections import Counter
import time
n = 1000
c = 0
# Ghi lại thời điểm bắt đầu
start_time = time.time()
for k in range(n):
c = c + 1
# Ghi lại thời điểm kết thúc
end_time = time.time()
# Tính thời gian hoàn thành
elapsed_time = end_time - start_time
# Sử dụng hàm Counter để đếm số lần lặp
counter = Counter(range(n))
# In số lần lặp
print("Số lần lặp: {}".format(counter))
# In thời gian thực thi
print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))
*Chương trình 2:
import time
n = 1000
c = 0
# Ghi lại thời điểm bắt đầu
start_time = time.perf_counter()
for k in range(n):
for j in range(n):
c = c + 1
# Ghi lại thời điểm kết thúc
end_time = time.perf_counter()
# Tính thời gian hoàn thành
elapsed_time = end_time - start_time
# In số lần lặp
print("Số lần lặp: {}".format(c))
# In thời gian thực thi
print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))
→Sự khác biệt độ phức tạp thời gian của 2 chương trình trên:
Độ phức tạp thời gian của chương trình 1 là O(1), còn độ phức tạp thời gian của chương trình 2 là O(n2).
Biết cách phân tích, đánh giá độ phức tạp thuật toán là kĩ năng quan trọng của người thiết kế thuật toán và chương trình. Các quy tắc đơn giản tính độ phức tạp thời gian mang lại cho em điều gì khi đánh giá thuật toán?
Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.
Xác định độ phức tạp thời gian của thuật toán sắp xếp chọn đã được học trong bài 21.
Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.
Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.
Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.
Xét hàm mô tả thuật toán tính tổng các số chẵn của một dãy số cho trước.
def tongchan(A):
s=0
for i in range(len(A)):
if A[i]%2==0:
s=s+A[i]
return s
Tìm hai bộ dữ liệu đầu vào có cùng kích thước của thuật toán trên nhưng có thời gian chạy khác nhau.
tham khảo!
Hai bộ dữ liệu đầu vào có cùng kích thước của thuật toán trên nhưng có thời gian chạy khác nhau có thể là:
- Bộ dữ liệu 1: A = [2, 4, 6, 8, 10] # Có 5 phần tử Kết quả mong đợi: Tổng các số chẵn là 30
- Bộ dữ liệu 2: A = [1, 3, 5, 7, 9] # Có 5 phần tử Kết quả mong đợi: Tổng các số chẵn là 0
Trong trường hợp này, cả hai bộ dữ liệu đều có cùng kích thước là 5 phần tử, nhưng thời gian chạy của thuật toán sẽ khác nhau vì số lượng số chẵn trong dãy số khác nhau. Bộ dữ liệu 1 chứa toàn số chẵn nên thời gian chạy của thuật toán sẽ lớn hơn bộ dữ liệu 2 chỉ chứa các số lẻ.