Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GOD_Shine
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 19:13

(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)

=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2

=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2

=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)

=>4ad=4bc

=>ad=bc

=>a/c=b/d

Nguyễn Mai Duyên
Xem chi tiết
Bùi Đình Hải
21 tháng 6 2018 lúc 8:03

khó wá trời ơi

Nguyễn Thị Hiền Lương
Xem chi tiết
caothisao
Xem chi tiết

Lớp 7 mới học số hửu tỷ

Khách vãng lai đã xóa
caothisao
15 tháng 6 2021 lúc 19:27

Mình ấn vội quá nên nhầm

Xin lỗi nhé

Cái này của lớp 7

Khách vãng lai đã xóa
li syaoran
Xem chi tiết
Yen Nhi
20 tháng 5 2021 lúc 10:09

\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)

\(\rightarrow ad+ab< bc+ab\)

\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)     \(\left(1\right)\)

\(\text{Ta có:}\)

\(ad< bc\)

\(\rightarrow ad+cd< bc+cd\)

\(\rightarrow d.\left(a+c\right)< c.(b+d)\)

\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)     \(\left(2\right)\)

\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Khách vãng lai đã xóa
nguyen vu anh
Xem chi tiết
Phạm Thành Đạt
Xem chi tiết
Lê Nguyên Hạo
18 tháng 8 2016 lúc 15:52

* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

vunguyenminhtrang
Xem chi tiết
KWS
23 tháng 8 2018 lúc 21:48

Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)

thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đạt Phạm
Xem chi tiết