* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Zúp mình
Cho hai số hữu tỉ \(\frac{a}{b}và\frac{c}{d}\)(b>0, d>0). Chứng Tỏ rằng
a) Nếu \(\frac{a}{b}< \frac{c}{d}thì\)ab < bc
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
Chứng minh rằng : Nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a = choặc a + b + c + d = 0
a, Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\) (b>0, d>0) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) .
b, Hãy viết 3 số hữu tỉ xen giữa \(\frac{-1}{3}\) và\(\frac{-1}{4}\)
cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\) (b>0,d>0).chứng tỏ rằng :
a) nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(ad< bc\)
b) nếu \(ad< bc\) thì \(\frac{a}{b}< \frac{c}{d}\)
Chứng minh rằng :
Nếu : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì \(a=c\) hoặc a + b + c + d = 0
1. Cho hai số hữu tỉ a/b và c/d ( b>0,d>0). Chứng tỏ rằng:
a) Nếu a/b<c/dthì ad<cb
b) Nếu ad<cb thì a/b<c/d
2. Tìm x thuộc Q:
Biết rằng x là số âm lớn nhất đc viết bằng 3 chữ số 1.
3. Cho a,b thuộc Z; B>0. So sánh hai số hữu tì a/b và a+2001/b+2001
4. Viết dạng chung của các số hữu tỉ bằng -628628/942942
5. So sánh a/b ( b>0) và a+n/b+n . n thuộc N*
Giúp vs câu nào cũng đc hết thì càng tốt
Giúp mk với
Chứng minh rằng nếu\(\frac{a}{b}\)<\(\frac{c}{d}\)(b>0,d>0) thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\).Chứng tỏ rằng nếu \(a\ne\mp b,c\ne\mp d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0, c - d khác 0 ), ta có thể suy ra tỉ lệ thức a + b/a - b = c + d/c - d.