Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải Băng

Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0, c - d khác 0 ), ta có thể suy ra tỉ lệ thức a + b/a - b = c + d/c - d.

Nguyễn Huy Tú
17 tháng 8 2016 lúc 10:57

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k;b=d.k\)

Ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

+) \(\frac{a+b}{c+d}=\frac{b.k+b}{d.k+d}=\frac{b.\left(k+1\right)}{d.\left(k+1\right)}=\frac{b}{d}\)   (1)

+) \(\frac{a-b}{c-d}=\frac{b.k-b}{d.k-d}=\frac{b.\left(k-1\right)}{d.\left(k-1\right)}=\frac{b}{d}\)   (2)

Từ (1) và (2) suy ra \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Rightarrowđpcm\)

 

Không Quan Tâm
17 tháng 8 2016 lúc 10:49

Đặt: a/b = c/d = k => a = bk, c = dk 
Ta có: 
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1) 
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2) 
Từ (1) và (2) => a+b/a-b = c+d/c-d 


Các câu hỏi tương tự
Nguyễn Ngọc Phượng
Xem chi tiết
Hoàng Ngọc Phương
Xem chi tiết
lâm thị hà
Xem chi tiết
Alayna
Xem chi tiết
Nguyễn minh thư
Xem chi tiết
Tran Ngoc Ha
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
đỗ thị kiều trinh
Xem chi tiết
Nguyễn Trọng Thắng
Xem chi tiết