Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Đặt \(\frac{a}{b}+\frac{c}{d}=k\) (vì a khác b , c khác d )
suy ra a= bk , c=dk
Ta có : \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k+1}{k-1}\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cách nhanh nhất
Ta có a/b=c/d=>a/c=b/d=a+b/c+d=a-b/c-d
=>a+b/a-b=c+d/c-d(đpcm)
chuẩn 100%(lên bảng làm được 10đ)