chứng minh 11^15+11^14-11^13 chia hết cho 131
Chứng minh: 2^17+2^14 chia hết cho 9
Chứng minh 15^3-25^2 chia hết cho 11
Ta có: \(2^{17}+2^{14}\)
\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)
\(15^3-25^2\)
\(=3^3.5^3-5^4\)
\(=5^3\left(27-5\right)=5^3.2.11⋮11\)
\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)
\(15^3-25^2=3^3\cdot5^3-5^4=5^3\left(3^3-5\right)=5^3\cdot22=5^3\cdot11\cdot2\Rightarrow15^3-25^2⋮11\)
Chứng minh: a,11^6+11^3 chia hết cho 4
b, 7^15-7^14 chia hết cho 42
c, A= 2+2^2+2^3+....+2^60 chia hết cho 7
a)Cho 8x+3y chia hết 11
Chứng minh x-y chia hết cho 11
b) Cho 4x+3y chia hết cho 13
Chứng minh 7x+2y chia hết cho 13
a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))
\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)
\(\Leftrightarrow\left(x-y\right)⋮11\).
b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))
\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)
\(\Leftrightarrow\left(7x+2y\right)⋮13\).
Chứng minh rằng:
A=311+312+313+314+315+316 chia hết cho 13
A=311+312+313+314+315+316
=> A = (311+312+313) + (314+315+316)
=> A = 311(30+31+32) + 314(30+31+32)
=> A = (30+31+32)(311+314)
=> A = 13(311+314) chia hết cho 13
A = 3^11 + 3^12 + 3^13 +...+ 3^16
= 3 ( 3^10 + .... + 3^15) chia hết cho 3
k nha
chúc bạn học tốt
hihih ( ^_ ^)
A=311+312+313+314+315+316
A=(311+312+313)+(314+315+316)
A=311(1+3+32)+314(1+3+32)
A=311.13+314.13
=>A chia hết cho 13
Nguyễn Kiên mình thì làm cách này nè
1/ Chứng minh A chia hết cho 15
2/ Cho B = 3 + 33 + 35 +....+31991
Chứng minh B chia hết cho 13 và B chia hết cho 41
3/ A = 119 + 118+ .... + 11 + 1
Chứng minh A chia hết cho 5
4/ Chứng minh:
a. 1088 + 8 chia hết cho 2
b. 88 + 220 chia hết cho 17
Bài 1: Cho A=119+118+117+...+11+1 Chứng minh A chia hết cho 5
Bài 2 :
a) Cho A=2+22+23+...+260 Chứng minh A chia hết cho 3 ; 7 và 15
b) Cho B=3+33+35+...+31991 Chứng minh B chia hết cho 13 và 41
Cho B = 13 ! + 19! - 15!. Chứng minh rằng:
a) B chia hết cho 11.
b) B chia hết cho 110
Ta có:
B = (1. 2. 3 ... 10.11...23) + (1. 2. 3 ... 10.11 ... 19) - (1. 2. 3. 10. 11 ... 15)
a) Vì mỗi số hạng và số trừ đều có thừa số 11 chia hết cho 11 nên B chia hết cho 11.
b) Vì mỗi số hạng và số trừ đều có thừa số (10.11) = 110 chia hết cho 110 nên B chia hết cho 110.
Bạn ơi,sao mà đề bài một kiểu,lời giải một kiểu vậy. Cách làm của bạn Đinh Tuấn Việt đúng rồi đó,nhưng mà đề bài thì sai rồi. Sau đây,mình cũng có góp một lời giải sau(sau khi đã sửa đề bài):
Ta có công thức sau:
Nếu a chia hết cho m,b chia hết cho m thì (a+b) chia hết cho m
Đối với số trừ cũng vậy
Ta có:
B=23!+19!-15!. Vậy B=(1.2.3.4.5.vv.10.11.vv.23)+(1.2.3.4.vv.10.11.vv.19)-(1.2.3.vv.10.11.vv.15)
a,Ta thấy: 23! chia hết cho 11, 19!chia hết cho 11, 15!chia hết cho 11 . Vậy 23!+19! (giả sử =A) chia hết cho 11 nên A-15! chia hết cho 11. Vậy B chia hết cho 11
b,Ta thấy: 23!, 19!, 15! đều chia hết cho 10,11 hay đều chia hết cho 110. Vậy áp dụng như phần a, B chia hết cho 11
dgfdgrfgedffhfdfsdfhfhgfgfgfgfdfgsffsdfffdsfdffdfg
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
cho B=23!+19!-15!
a)chứng minh rằng
b)B chia hết cho 11
c)13 chia hết cho 110