Giả sử x+y+z=2017 và 1/x+y +1/y+z +1/x+z= 1/672
Tính tổng C = x/y+z + y/z+x + z/x+y
Bài 1: Giả sử x + y + z = 2017 và \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=\dfrac{1}{672}\)
Tính tổng C = \(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
Biết x+y+z = 2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
Tính tổng A = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Ta có : \(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\) = \(\frac{2017}{672}\)
\(\Leftrightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\)\(\frac{2017}{672}\)
\(\Leftrightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{z}{z+x}\)= \(\frac{2017}{672}\)
\(\Rightarrow A=\frac{2017}{672}-3\)
Giả sử x + y + z=2017 và \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=\dfrac{1}{672}\)
Tính tổng C = \(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
Xin lỗi vì đăng không đúng dạng bài nhưng mk mong các bn giúp đỡ. Mk cảm ơn!!
Theo đề bài ta có:
\(\left(x+y+z\right)\cdot\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=2017\cdot\dfrac{1}{672}\)
\(\Rightarrow\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow C=\dfrac{2017}{672}-3=\dfrac{1}{672}\)
) Tính giá trị của biểu thức sau bằng các hợp lý : A=\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b) Tính: B=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
c) Giả sử x+y+z=2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
TÍNH tổng C=\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
d) Cho ba sô x,y,z thỏa mãn xyz=2017
Tính tổng: D= \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{zx+z+1}\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
b
Tổng quát:\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n^2+2n\right)-\left(n+2\right)}{n\left(n+1\right)}\)
\(=\frac{n\left(n+2\right)-\left(n+2\right)}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Thay số vào,ta được:
\(\frac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\cdot\frac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}\cdot.....\cdot\frac{\left(2017-1\right)\left(2017+2\right)}{2017\left(2017+1\right)}\)
\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{2016\cdot2019}{2017\cdot2018}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2016}{2\cdot3\cdot4\cdot...\cdot2017}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2019}{3\cdot4\cdot5\cdot...\cdot2018}\)
\(=\frac{1}{2017}\cdot\frac{2019}{3}=\frac{2019}{6051}\)
Cho : x + y + z = 2017 và : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
Tính : \(C=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Đặt : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=M\)
\(\Rightarrow\left(x+y+z\right).M=\frac{1}{672}.2017\)
\(\Rightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=\frac{2016}{672}+\frac{1}{672}\)
\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=3+\frac{1}{672}\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{1}{672}\)
Nhân cả 2 vế với \(x+y+z\),ta được:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{672}\cdot2017\)
\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\frac{2017}{672}\)
\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{2017}{672}\)
\(\Rightarrow C=\frac{1}{672}\)
Biết x+y+z = 2017 và \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=\dfrac{1}{672}\)
Tính tổng A = \(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
Lời giải:
\(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(A+3=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{x+y}+1\right)\)
\(A+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)
\(A+3=2017\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(A+3=2017.\frac{1}{672}=\frac{2017}{672}\)
\(\Rightarrow A=\frac{2017}{672}-3=\frac{1}{672}\)
cho x+y+z=2017 và 1/x+y + 1/x+z + 1/y+z = 2017
Tính A = x/y+z + y/x+z + z/x+y
Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)
= x/y+z + y/x+z + z/x+y + 1 + 1 + 1
= x/y+z + y/x+z + z/x+y + 3
=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286
Tk mk nha
Ta có :(x+y+z)(1/x+y + 1/y+z + 1/x+z) =20172
=>x/x+y +y/x+y +z/x+y + x/y+z + y/y+z + z/y+z +x/x+z + y/x+z + z/x+z=20172
=>(x/x+y + y/x+y)+(y/y+z + z/y+z)+(x/x+z + z/x+z)+(x/y+z + y/x+z + z/x+y) =4068289
=>1+1+1+A=4068289
=>A=4068286
cho 3 sox,y,z thỏa mãn điều kiện
x+y-2017*z\z=y+z-2017*x\x=z+x-2017*y\y
hãy tính giá trị biểu thức
C=(1+x/y)*(1+y/z)*(1+z/x)
đề toán bồi dưỡng nhé mọi người
y x 8,01 - y : 100 = 38
y x 8,01 - y x 0,01 = 38
y x ( 8,01 - 0,01 ) = 38
y x 8 = 38
y = 38 : 8
mk chắc chắn
p/s tham khảo nhé ^_^
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)