Cho x thuộc R và x+y+z+xy+xz+yz =6 . x2+y2+z2 lớn hơn hoặc bằng 3
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
4)2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
4)2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3
bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc
1) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^2x^2\left(z-x\right)\)
\(=\left(y^2z^3-x^3y^2\right)-\left(y^3z^2-x^2y^3\right)-z^2x^2\left(z-x\right)\)
\(=y^2\left(z^3-x^3\right)-y^3\left(z^2-x^2\right)-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(z^2+zx+x^2\right)-y^3\left(z-x\right)\left(z+x\right)-z^2x^2\left(z-x\right)\)
\(=\left(z-x\right)\left[y^2\left(z^2+zx+x^2\right)-y^3\left(z+x\right)-z^2x^2\right]\)
\(=\left(z-x\right)\left[\left(y^2z^2+xy^2z+x^2y^2\right)-\left(y^3z+xy^3\right)-z^2x^2\right]\)
\(=\left(z-x\right)\left(y^2z^2+xy^2z+x^2y^2-y^3z-xy^3-z^2x^2\right)\)
\(=\left(z-x\right)\left[\left(y^2z^2-y^3z\right)-\left(x^2z^2-x^2y^2\right)+\left(xy^2z-xy^3\right)\right]\)
\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z^2-y^2\right)+xy^2\left(z-y\right)\right]\)
\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z-y\right)\left(z+y\right)+xy^2\left(z-y\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left[y^2z-x^2\left(z+y\right)+xy^2\right]\)
\(=\left(z-x\right)\left(z-y\right)\left(y^2z-x^2z-x^2y+xy^2\right)\)
\(=\left(z-x\right)\left(z-y\right)\left[\left(y^2z-x^2z\right)-\left(x^2y-xy^2\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left[z\left(y^2-x^2\right)-xy\left(x-y\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left[z\left(y-x\right)\left(y+x\right)+xy\left(y-x\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left[z\left(y+x\right)+xy\right]\)
\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left(yz+xz+xy\right)\)
2) \(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz-xz+x+y+z-1\)
\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(z-1\right)\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)
\(=\left(z-1\right)\left(xy-y-x+1\right)\)
\(=\left(z-1\right)\left[\left(xy-y\right)-\left(x-1\right)\right]\)
\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
Cho x,y,z >0 t/m x2+y2+z2=3.
C/m \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Bạn tham khảo lời giải tại đây:
Cách khác:
Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)
\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)
Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)
Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$
Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$
BĐT $(*)$ trở thành:
$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$
$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$
$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$
Điều này đúng với mọi $\sqrt{3}< a\leq 3$
Do đó BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
a, \(^{\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow}x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+z^2\ge0}\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow A\le\frac{a^2}{3}\). dấu = xảy ra khi và chỉ khi x=y=z=a/3
b,Ap dụng bđt bunhia ta đc \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=a^2\Rightarrow B\ge\frac{a^2}{3}\)
dấu = xảy ra khi x=y=z=a/3
cho x, y, z lớn hơn hoặc bằng 0 thỏa mãn điều kiện x+y+z = a
a, tìm GTLN của A= xy+yz+xz
b, tìm GTNN của B= x^2+y^2+z^2
ai nhanh mik tick
a) x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50
b) x chia hết 15 và 0 < x lớn hơn hoặc bằng 40
a) ta có : 12.1 < 20 ; 12.2 > 20 và 12.4 > 50 nên các số tự nhiên x sao cho : x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50 là 24 , 36 , 48 .
b) ta có : 15.0 = 0 ; 15.1=15 > 0 và 15.2< 40 ; 15.3 > 40 nên các số tự nhiên x sao cho : x chia hết cho 15 và 0 < x < hoặc bằng 40 là 15 và 30
Trl
-bạn KILL TEAM KILL làm đúng r nhé
Hok tốt