Tính A = \(\frac{1+2+3+4+5+....+10000}{2+4+6+8+10+...+10000}\)
1+2+3+....+10000=
1+3+5+7+.....+10000
2+4+6+8+10+.......+10000
1+2+3+....+10000
Số số hạng của tổng là:
(10000-1):1+1=10000 ( số )
Tổng là:
(10000+1)x10000:2=50005000
2+4+6+8+10+.....+10000
Số số hạng của tổng là:
(10000-2):2+1=5000( số )
Tổng là:
(10000+2)x5000:2=25005000
ý b bn xem lại đầu bài nha
nó ko tính được
đâu
chúc bn học gioi!
@@
Tính nhanh
M = 1/10000 + 13 / 10000 + 25 / 10000 + 37 / 10000 + ... + 121 / 10000 + 133 / 10000
a + a + a + 1/2 x 2/5 + a + 8/10 + a = 136
1/2 + 1/4 + 1/6 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
\(M=\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+\frac{37}{1000}+...+\frac{121}{1000}+\frac{133}{1000}\)
\(=\frac{1+13+25+37+...+121+133}{1000}\)
\(=\frac{804}{1000}=\frac{201}{250}\)
thực hiện phép tính rồi rút gọn
A=\(\left(\frac{4}{9}+\frac{5}{6}\right):\left(\frac{7}{8}-\frac{7}{12}\right)\)
B=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
C=\(\left[3-\frac{1}{5}+\frac{3}{10}\right]:\left(2+\frac{1}{4}-\frac{3}{5}\right)\)
Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9998}{9999}.\frac{10000}{10000}\)
So sánh A và 0,01
Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)
Rõ ràng A < A'
=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)
Nên A < 0,01
1+2+3+4+5+6+7+8+9+0+10+11+12+13+16+10000
1+2+3+4+5+6+7+8+9+0+10+11+12+13+16+10000
= 45 +0 + 10 + 11 +12+13+16+10000
= 107 + 10000
= 10107
Tính nhanh : \(\frac{10000}{10001}-\frac{9999}{10000}+\frac{1}{9999}-\frac{1}{10000}+...+\frac{3}{4}-\frac{2}{3}+\frac{1}{2}-\frac{1}{3}\)
Thực hiện phép tính rồi rút gọn
A= 3/4. 8/9. 15/16... 9999/10000
B= [ 3 - 1/5+3/10] : ( 2+ 1/4 -3/5)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}......\frac{99.101}{100.100}\)
\(=\frac{1.2.3...99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4....100}\)
\(=\frac{1}{100}.\frac{101}{2}\)
\(=\frac{101}{200}\)
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}....\frac{9999}{10000}< \frac{1}{100}\)
CMr
đặt A= \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{10000}{10001}\)
Lấy A.B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{10000}{10001}=\frac{1}{10001}\)
mặt khác
Ta có
\(\frac{1}{2}< \frac{2}{3}\\\)
\(\frac{3}{4}< \frac{4}{5}\)
....
\(\frac{9999}{10000}< \frac{10000}{10001}\)
=> A<B
=> A.A<A.B
=>A2<\(\frac{1}{10001}< \frac{1}{10000}\)
=>A<\(\sqrt{\frac{1}{10000}}=\frac{1}{100}\)
Vậy \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)<\(\frac{1}{100}\)
ĐPCM
cái dấu\(\sqrt{ }\) mik chưa học bạn sửa cái chỗ gần về sau hộ mik nhé
đó là dấu căn bậc 2 bạn nhé :))
VD\(\sqrt{9}=3\\\) (32=9)
\(\sqrt{16}=4\left(4^2=16\right)\)
1+2+3+4+5+6+7+8+10+...........+9999+10000
bằng bao nhiêu các bạn
Số số hạng = ( 10.000-1)/1 + 1 = 10.000 (số hạng)
Tổng = ( 10.000 + 1) * 10.000 /2 = 50.005.000