Chứng minh phương trình vô nghiệm
x4 + x3 + x2 + 2 = 0
cho x1, x2 là 2 nghiệm dương của phương trình ax^2+bx+c=0
chứng minh phương trình cx^2+ax+b=0 cũng có 2 nghiệm dương x3,x4 và x1+x2+x3+x4>4 ?
Chứng minh rằng nếu phương trình a x 2 + bx + c = x (a ≠ 0) vô nghiệm thì phương trình a a x 2 + b x + c 2 + b(a x 2 + bx + c) + c = x cũng vô nghiệm.
cho phương trình (x+1)(x+2)(x+3)(x+4)=m
biết rằng phương trình đã cho có 4 nghiệm phân biệt x1,x2,x3,x4x1,x2,x3,x4
chứng minh x1.x2.x3.x4=24−m
Cho hai phương trình x2+2022x+1=0 (1) và x2+2023x+1 (2).Gọi x1,x2 là nghiệm của phương trình (1) ; x3,x4 là nghiệm của phương trình (2).Giá trị của biểu thức P=(x1+x3)(x2+x3)(x1-x4)(x2-x4) là
A.4045 B.-1 C.1 D.0
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Chứng minh bất phương trình sau vô nghiệm: 1 + x 2 - 7 + x 2 > 1
Gọi x1, x2 là nghiệm của phương trình x^2+2009x+1=0,
x3,x4 là nghiệm của phương trình x^2+2010x+1=0.
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
Cho phương trình 2 x 3 + 2 x 2 - 3x + 10 = 2 x 3 + x 2 – 10. Sau khi biến đổi đưa phương trình trên về dạng a x 2 + bx+ c =0 thì hệ số a bằng ?
A. 2
B. 1
C. 3
D. -1
Đáp án B
Ta có : 2 x 3 + 2 x 2 - 3 x + 10 = 2 x 3 + x 2 – 10
⇔ 2 x 3 + 2 x 2 - 3 x + 10 - 2 x 3 - x 2 + 10 = 0
⇔ x 2 – 3 x + 20 = 0
Phương trình trên là phương trình bậc hai một ẩn với a = 1; b = -3 và c = 20.
Bài 1: Chứng minh bất phương trình:
a) x2+2mx+2m+3>0, ∀xϵR
b) mx2+(m-1)x+m+1≤0, ∀xϵR
c) (m-1)x2+2mx+2-3m>0, vô nghiệm
Bài 2: Phương trình: mx2+(m-1)x+1-m=0
a) Có nghiệm
b) Có 2 nghiệm phân biệt
c) Có 2 nghiệm trái dấu
d) Có 2 nghiệm dương phân biệt
e) Có 2 nghiệm âm phân biệt
Bài 2:
a: TH1: m=0
=>-x+1=0
=>x=-1(nhận)
TH2: m<>0
\(\text{Δ}=\left(m-1\right)^2-4m\left(1-m\right)\)
=m^2-2m+1-4m+4m^2
=5m^2-6m+1
=(2m-1)(3m-1)
Để phương trình có nghiệm thì (2m-1)(3m-1)>=0
=>m>=1/2 hoặc m<=1/3
b: Để phương trình có hai nghiệm phân biệt thì (2m-1)(3m-1)>0
=>m>1/2 hoặc m<1/3
c: Để phương trình có hai nghiệmtrái dấu thì (1-m)*m<0
=>m(m-1)>0
=>m>1 hoặc m<0
d: Để phương trình có hai nghiệm dương phân biệt thì
\(\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\\dfrac{-m+1}{m}>0\\\dfrac{1-m}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\0< m< 1\end{matrix}\right.\)
=>1/2<m<1
Chứng tỏ phương trình x 2 - 8 x + 18 = 0 vô nghiệm