Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Lê
Xem chi tiết
Nguyên Lê
Xem chi tiết
Nguyên Lê
Xem chi tiết
fairy tail
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Nguyễn Tuấn Anh
5 tháng 5 2016 lúc 22:41

Xét \(3a^2+3b^2=10ab\Rightarrow a^2+b^2=\frac{10ab}{3}\)

hay: \(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2+2ab=\frac{10}{3}ab+2ab\Rightarrow\left(a+b\right)^2=\frac{16}{3}ab\) (1)

\(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2-2ab=\frac{10}{3}ab-2ab\Rightarrow\left(a-b\right)^2=\frac{4}{3}ab\) (2)

Ta có \(p=\frac{a+b}{a-b}\Rightarrow p^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{16}{3}ab}{\frac{4}{3}ab}=4\) Vậy \(p=2\) hoặc \(p=-2\)

Nguyễn Lê Nhật Linh
6 tháng 5 2016 lúc 16:36

ta có 3a^2 +3b^2=10ab

<=> 3a(a-3b) - b(a-3b)=0

<=> (3a-b)(a-3b)=0

=> a=3b ; 3a=b (loại vì a>b>0)

thay a=3b

ta có P=3b-b/3a+b

           = 2b/4b

           =1/2

Nguyễn Thùy Dung
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
phạm anh thơ
Xem chi tiết
Trịnh Hữu An
19 tháng 6 2017 lúc 9:02

Ta có:3a2-10ab+3b2=0 nên 4a-8ab+4b2-a2-b2-2ab =0;

=> (2a-2b)2-(a+2ab+b2)  =0  bạn đóng ngoặc trước dấu trừ nên phải đổi dấu nhé;

=>(2a-2b)2=(a+b)2 hai phân số bằng nhau có cùng số mũ nên cơ số phải bằng nhau :

=>2(a-b)=a+b (1);

Thay (1) vào biểu thức trên ta có:\(\frac{a-b}{2\left(a-b\right)}=\frac{1}{2}\)k nha bạn

Trần Thanh Phương
6 tháng 11 2018 lúc 20:28

Đặt \(M=\frac{a-b}{a+b}\)

\(3a^2+3b^2=10ab\)

\(3a^2+3b^2-10ab=0\)

\(4a^2-a^2+4b^2-b^2-8ab-2ab=0\)

\(\left[\left(2a\right)^2-2\cdot2a\cdot2b+\left(2b\right)^2\right]-\left(a^2+2ab+b^2\right)=0\)

\(\left(2a-2b\right)^2-\left(a+b\right)^2=0\)

\(\left(2a-2b\right)^2=\left(a+b\right)^2\)

TH1: \(2a-2b=a+b\)

\(\Leftrightarrow2a-2b-a-b=0\)

\(\Leftrightarrow a-3b=0\)

\(\Leftrightarrow a=3b\)

Thay a = 3b vào M ta có :

\(M=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

TH2: \(2a-2b=-a-b\)

\(\Leftrightarrow2a-2b+a+b=0\)

\(\Leftrightarrow3a-b=0\)

\(\Leftrightarrow3a=b\)

Thay b = 3a vào M ta có :

\(M=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)

Vậy \(M\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)

P.s: Trịnh Hữu An thiếu t/h nha bạn

Đoàn thị thảo
6 tháng 11 2018 lúc 20:33

ta có \(\frac{\left(a-b^2\right)}{\left(a+b\right)^2}\)=\(\frac{a^2-2ab+b^2}{a^2+2ab+b^2}\)=\(\frac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2}\)=\(\frac{10ab-6ab}{10ab+6ab}\)=\(\frac{4ab}{16ab}\)=\(\frac{1}{4}\)(

Pro No
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
7 tháng 2 2022 lúc 19:46

undefined

Trần Tuấn Hoàng
7 tháng 2 2022 lúc 20:00

\(P=\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\) (\(a\ne b;a\ne0;a\ne-b;b\ne0\))

\(=\dfrac{a^2}{b\left(a+b\right)}+\dfrac{b^2}{a\left(b-a\right)}-\dfrac{a^2+b^2}{ab}\)

\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^4-b^4\right)}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{-a^3b-b^3a}{ab\left(a+b\right)\left(a-b\right)}\)

\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a+b\right)\left(a-b\right)}=-\dfrac{a^2+b^2}{a^2-b^2}\).

b) -Ta có: \(P=0\)

\(\Leftrightarrow-\dfrac{a^2+b^2}{a^2-b^2}=0\)

\(\Leftrightarrow a^2+b^2=0\)

-Vì \(a^2\ge0;b^2\ge0\)

\(\Rightarrow a=0;b=0\) (không thỏa mãn điều kiện).

-Vậy không có giá trị nào của a,b để \(P=0\).

c)