Cho biểu thức
A = x+2 / x-1
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x để A > 1
(2−3xx2+2x−3−x+31−x−x+1x+3):3x+12x3−1(2−3xx2+2x−3−x+31−x−x+1x+3):3x+12x3−1
và B=x2+x−2x3−1x2+x−2x3−1
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=A−1−B
Cho biểu thức A= (x/x^2-9+1/x-3+2/3-x):3/x+3
a) Tìm x để A xác định
b) Rút gọn A
c) Tính giá trị của A khi x^2-8x+15=0
d) Tìm x thuộc Z để A thuộc Z
a: DKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(A=\left(\dfrac{x}{\left(x-3\right)\left(x+3\right)}+\dfrac{-1}{x-3}\right)\cdot\dfrac{x+3}{3}\)
\(=\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{3}=\dfrac{-1}{x-3}\)
c: Thay x=5 vào A, ta được:
\(A=\dfrac{-1}{5-3}=-\dfrac{1}{2}\)
d: Để A là số nguyên thì \(x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)
ab, đk x khác 3 ; -3
\(A=\left(\dfrac{x}{x^2-9}-\dfrac{1}{x-3}\right):\dfrac{3}{x+3}\Leftrightarrow=\left(\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{3}{x+3}=-\dfrac{1}{x-3}\)
c, x^2 - 8x + 15 = 0 <=> (x-3)(x-5) = 0 <=> x = 3 (ktm) ; x= 5
Thay x = 5 vào A ta được : A =-1/2
d, \(\Rightarrow x-3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
TH1 : x - 3 = 1 <=> x = 4
TH2 : x - 3 = -1 <=> x = 2
Cho biểu thức : A = \(\frac{x+2}{x-1}\)
a) Tìm x thuộc Z để A thuộc Z
b) tìm x để A > 1
Ta có : A = \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để A thuộc Z thì 3 chia hết cho x - 1
Hay x - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
x - 1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
Để A > 1 thì 3/x - 1 > 0
Do đó : x - 1 > 0
=> x > 1
Vậy x > 1 thì A > 1
cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z
a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)
Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-3}{x-1}\)
b) Để A nguyên thì \(-3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
Cho A= x^2-2x+1/x^2-1 a)Tìm đk xác định của x để biểu thức A xác định b) Rút gọn biểu thức A c) Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Để A nguyên thì x+1-2 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{0;-2;-3\right\}\)
Cho biểu thức A = 1 - x/x + 2 . Tìm x thuộc Z để A nguyên
ĐKXĐ : x + 2 \(\ne0\Rightarrow x\ne-2\)
Ta có A = \(\frac{1-x}{x+2}=\frac{-2-x+3}{x+2}=-1+\frac{3}{x+2}\)
Để A \(\inℤ\Rightarrow\frac{3}{x+2}\inℤ\Rightarrow3⋮x+2\Rightarrow x+2\inƯ\left(3\right)\)
=> \(x+2\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{-1;1;-3;-5\right\}\)
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)