sa sánh C= 2018^2011+1/ 2018^2019 +1 và D= 2018^2017 /2018^2013 +1
Bài 1:so sánh: 2017/2018+2018/2019 và ( 2017+2018/2018/2019)
Bài 2: (1/2003+1/2004+1/2005)/(2/2003+2/2004+2/2005)
Bài 3: 2013+ (2013/1+2)+(2013/1+2+30+...+(2013/1+2+3+..+2012)
Bài 1
\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó
Ta tách :
\(\frac{2017}{\left(2018+2019\right)+2018}\)
đến đây ta tách
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
vậy....
mấy câu khác tương tự
2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)
= \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)
=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)
= \(\frac{1}{2}\)
3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)
= \(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)
= \(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)
= \(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)
=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)
= \(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
= \(4026.\left(1-\frac{1}{2013}\right)\)
= \(4026.\frac{2012}{2013}\)
=\(4024\)
So sánh:
\(C=\frac{2018^{2019}-1}{2018^{2018}-1}\)và\(D=\frac{2017^{2018}+1}{2017^{2017}+1}\)
a)
Ta có: 2015/2016=1-1/2016
2016/2017=1--1/2020.So sánh 1/2016 và 1/2017 được 1/2016>1/2017
Suy ra 2015/2016<2016/2017
b) 2018/2018=1
2019/2018>1
Vậy 2018/2018 <2019/2018
CHÚC BẠN HỌC TỐT NHÉ!!!
Cho C = 52018+1/52017+1 và D = 52019+1/52018+1. So sánh C và D
\(C=5^{2018}+\frac{1}{5^{2017}+1}=\left(5^{2017}+1\right)+\frac{1}{5^{2017}+1}\)
\(D=5^{2018}+\frac{1}{5^{2018}+1}=\left(5^{2017}+1\right)+\left(1+\frac{1}{5^{2017}+2}\right)\)
Do \(\frac{1}{5^{2017}+1}< 1+\frac{1}{5^{2017}+2}\)
Nên \(C< D\)
Ta có : C = \(\frac{5^{2018}+1}{5^{2017}+1}\)
=> \(\frac{C}{5}=\frac{5^{2018}+1}{5^{2018}+5}=1-\frac{4}{5^{2018}+5}\)
Lại có D = \(\frac{5^{2019}+1}{5^{2018}+1}\)
=> \(\frac{D}{5}=\frac{5^{2019}+1}{5^{2019}+5}=1-\frac{4}{5^{2019}+5}\)
Vì \(\frac{4}{5^{2018}+5}>\frac{4}{5^{2019}+5}\Rightarrow1-\frac{4}{5^{2018}+5}< 1-\frac{4}{5^{2019}+5}\Rightarrow\frac{C}{5}< \frac{D}{5}\Rightarrow C< D\)
Ta có : \(C=\frac{5^{2018}+1}{5^{2017}+1}\)
\(\Rightarrow\frac{1}{5}C=\frac{5^{2018}+1}{5^{2018}+5}=\frac{5^{2018}+5-4}{5^{2018}+5}=1-\frac{4}{5^{2018}+5}\)
Ta lại có : \(D=\frac{5^{2019}+1}{5^{2018}+1}\)
\(\Rightarrow\frac{1}{5}D=\frac{5^{2019}+1}{5^{2019}+5}=\frac{5^{2019}+5-4}{5^{2019}+5}=1-\frac{4}{5^{2019}+5}\)
Vì \(\frac{4}{5^{2018}+5}>\frac{4}{5^{2019}+5}\) nên \(1-\frac{4}{5^{2018}+5}< 1-\frac{4}{5^{2019}+5}\)\(\Rightarrow\frac{1}{5}C< \frac{1}{5}D\)
\(\Rightarrow C< D\)
Vậy \(C< D\).
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1
so sánh A và B A=2016/2017-2017/2018+2018/2019-2019/2020 B=-1/2016-2017 - 1/2018-2019
so sánh A=2017+2018 /2018+2019 và B=2017/2018+2018/2019
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
So sánh hai phân số
A=2017/2018+2018/2019+2019/2020 và B=(2017+2018+2019)/(2018+2019+2020)