Tìm x,y ∈ Z biết: (x-1).(y+2)=11
Giải thích dễ hiểu giúp em với nhóe!!
\(\in\)\(\in\)
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
GIẢI GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP LẮM Ạ!!!!!
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
2/x=3/y
Tìm x,y biết xy=96
Ai giúp em ạ. ai giải đáp dễ hiểu em sẽ tick
\(\frac{2}{x}=\frac{3}{y}\)
\(\Rightarrow3x=2y\)
\(\Rightarrow x=\frac{2y}{3}\)
Thay x vào xy ( đề bài ) ta có :
\(\frac{2y}{3}\cdot y=96\)
\(\Rightarrow\frac{2y^2}{3}=96\)
\(\Rightarrow2y^2=288\)
\(\Rightarrow y^2=144\)
\(\Rightarrow y=\left\{\pm12\right\}\)
\(\Rightarrow\orbr{\begin{cases}y=12\Rightarrow x=8\\y=-12\Rightarrow-8\end{cases}}\)
Vậy các cặp ( x; y ) thỏa mãn là ( 8; 12 ) và ( -8; -12 )
Áp dụng công thức dãy tỉ số bằng nhau:
x/2 = y/3 = xy/2.3 = 96/6 = 16
x/2 =16 => x=32
y/3 =16 => y=48
Câu 5: a)Tìm x,y: x² +26y² +10xy -14y +49=0 b)Tìm GTNN A=(x-1)(x+2)(x+3)(x+6)+2044 GIÚP VỚI Ạ.EM MỚI HỌC LỚP 8 THÔI NÊN GIÚP EM CÁCH NÀO DỄ HIỂU Ạ!!!
a: =>x^2+10xy+25y^2+y^2-14y+49=0
=>(x+5y)^2+(y-7)^2=0
=>y-7=0 và x+5y=0
=>y=7 và x=-5y=-35
b: A=(x-1)(x+6)(x+2)(x+3)+2044
=(x^2+5x-6)(x^2+5x+6)+2044
=(x^2+5x)^2-36+2044
=(x^2+5x)^2+2008>=2008
Dấu = xảy ra khi x=0 hoặc x=-5
1, Cho |x|\(\le3\), |y| \(\le5\)với x,y\(\in\)Z. Biết x-y=2. Tìm x và y
2, Tìm x\(\in\)Z, biết
a, |x+a|=a với a\(\in\)Z
b, 1< |x-2| < 4
Tìm các số x, y, z biết :
a) x : y : z=3 : 5 : (-2) và 5x - y + 3z = -16
b) 2x = 3y, 5y = 7z và 3x - 7y + 5z = 30
c) x : y : z = 4 : 5 : 6 và \(x^{2}-2y^{2}+z^{2}\)=18
Các bạn giúp mình với, giải và cách làm dễ hiểu, chi tiết giùm mình nhé ! Thanks !
a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16
Áp dụng t/c của dãy tỉ số = nhau , ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)
Vậy x = 12 ; y = 20 ; z = -8
a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)
\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)
b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)
c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)
Vậy x = 12 ; y = 15 ; z = 18
hoặc x = -12 ; y = -15 ; z = -18
b) Theo bài ra , ta có :
2x = 3y => \(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z => \(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\) (2)
Tứ (1) , (2) => \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) => \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\) và 3x - 7y + 5z = 30
Áp dụng t/c của dãy ti số = nhau , ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\frac{x}{21}=2\Rightarrow x=2.21=42\\ \frac{y}{14}=2\Rightarrow y=2.14=28\\ \frac{z}{10}=2\Rightarrow z=2.10=20\\\)
Vậy x = 42 ; y = 28 ; z = 20
\(x\), \(y\) \(\in Z\)biết \(\frac{x-4}{y-3}=\frac{4}{3}\)và x - y= 5
mik cần gấp lắm, giúp mik nha >< làm dễ hiểu giúp mik nx nha ><
1h mik ik học ròi
\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\left(x-4\right).3=\left(y-3\right).4\)
\(3x-12=4y-12\)
\(\Leftrightarrow3x=4y\)
\(\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x-y}{\frac{1}{3}-\frac{1}{4}}=\frac{5}{\frac{1}{12}}=5.12=60\)
\(\Rightarrow\hept{\begin{cases}x=60.\frac{1}{3}=20\\y=60.\frac{1}{4}=15\end{cases}}\)
Vậy x = 20 ; y = 15
Ai giải giúp mik nhanh+chính xác+dễ hiểu bài này thì nhận dc 2 like từ nick này và nick phụ của mik nha :vvv
1. Tìm x,y biết
x(x-y)=\(\frac{3}{10}\) và y(x-y)= \(\frac{-3}{50}\)
2.Tìm x,y,z biết:
\(\frac{y+z+1}{x}=\frac{x+z+2013}{y}=\frac{x+y-2014}{z}=\frac{1}{x+y+z}\)
giải nhanh hộ mik nha giờ mik đang rất cần gấp
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
Bài 1: Tìm số cặp x,y biết: x+y=n (x,y,n\(\in\)N)
Bài 2:Tìm số cặp x,y,z biết x+y+z=m(x,y,z,m\(\in\)N* )
số cặp x,y là :
N :2 = ??
đ/s:.......
số cặp x,y,z là :
N* :3=?
Tìm \(x,y\in Z^+\) biết: \(2^x+1=3^y\)
Giải giúp mình với, chiều thứ 7 nộp rùi
\(2^x+1=3^y\)
\(\Rightarrow\hept{\begin{cases}2^1+1=3^1\\2^3+1=3^2\end{cases}}\Rightarrow\hept{\begin{cases}x=1;y=1\\x=3;y=2\end{cases}}\)
Despacito làm chuẩn không cần chỉnh
Làm ơn cho 1 L_I_K_E!!!!