Tìm Min Max nếu có của
A=(x^2+3x+2)/(x^2+2x+1)
B=(4x^2+4x-7)/(x^2-4x+4)
C=(3x+2)/(x^2-2x+1)
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
1. Tìm max hoặc min:
a. A = x^2 - 5x - 1
b. B = 1/4x - x + 5.
c. C = x^2 - 4xy + 7y^2 - 2y +3
d. D = 5x^2 - xy + 1/24y^2 + 2x - 1
e. E = x^2 - 3xy + y - 2y - 1
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 ).( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
b. 1/16x^2 - ( 3x + 5 ) = 0
c. 4.( x - 3 ) - ( x + 2 ) = 0
Tim min
A= x^2+x-2
B=x^2-x
C=1/4x^2-x+7
D=1/2x^2+3x+1
E=(x-1)(x^2+x+1)-x(x-1)(x+1)+x^2
Tim max
A= -2(x-1)^2+(x+3)
B=-x^2+4x-1
C=-2x^2+x
D=(x-3)(2-x)-3(x+5)(x+7)
E=-3x^2+4x-1
AI HELP MIK DAU TIEN MIK SẼ HAU TẠ
a, \(A=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\)
=> \(A\ge-\frac{9}{4}\) dấu = xảy ra khi : \(x=\frac{-1}{2}\)
b, \(B=x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
=> \(B\ge-\frac{1}{4}\) dấu = <=> \(x=\frac{1}{2}\)
c, \(C=\frac{1}{4}.x^2-2.\frac{1}{2}x+1+6=\left(\frac{1}{2}x^{ }-1\right)^2+6\)
=> \(C\ge6\) dấu = <=> \(x=2\)
1) Phân tích thành nhân tử:
a) x^4+2x^3-4x-4
b)x^2-2x-4y^2-4y
c)x^2(1-x^2)-4-4x^2
d)x^2+y^2-x^2y^2+xy-x-y
2) Phân tích thành nhân tử:
a)x^2+2x-24
b)x^2+3x+2
c)2x^2+3x+1
d)3x^2-4x+1
3) a) Tìm GTNN:
A=x^2+6x-5
B=x^2-3x+4
b) Tìm GTLN:
C= -x^2-2x+7
D= -3x^2-4x+2
\(x^2+3x+2\)
\(=x^2+x+2x+2\)
\(=x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x+2\right)\)
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41
Tìm max hoặc min:
a) ( 2-x) (x+4)
b) 4x2-6x+9
c) 3x2+15x-2
d) -2x(x-1)+10
e) 2x(3-x)+5
1: Tìm max: S= -(3x-2)^2-(3x-1)^2
2: S=-x^2-3y^2-2xy+10x+18y+8
2: tìm min max: P=6x-8/x^2+9
3: tìm max : S=-x^2+4x+1/2x^2+6
4 tìm min A= x^6+512/x^2+8
5 tìm min A= 2x^16x+41/x^2-8x+22
6 tìm min A= x^2-4x+1/x^2
7 tìm max A= x/(x+10)^2
8 cho x+y=1, x,y>0 tìm min A=1/x+1/y
Mọi người ơi giải giuos mình với chiều nay mình hk r mà chưa bt cách giải làm sao mn giúp mình với ai đúng mình sẽ tích cho nhé ngay và luôn luôn. Cảm ơn mn nhiều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7