Giúp mình nha!
Chứng minh trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3
cứng minh rằng trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3
Để làm đc bài này bạn cần áp dụng phương pháp đồng dư,chắc chắn sẽ ra,
Chứng minh rằng trong 9 nguyên bất kì luôn tìm được 5 số có tổng chia hết cho 5
Bạn tham khảo ở đây nhé
Bài toán 120 - Học toán với OnlineMath
Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .
Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3
Mỗi cặp đồng dư 0,3,6 mod 5
Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm
Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5
Cho 65 số tự nhiên bất kì. Chứng minh luôn tìm được 9 số có tổng chia hết cho 9. Giải theo nguyên lí Dirichlet nha
cho 5 số tự nhiên bất kì . chứng minh rằng luôn tìm được 3 số có tổng chia hết cho 3
Xét các trường hợp:
· a, b, c cùng chẵn --> đương nhiên chọn bất kỳ cặp nào cũng có
tổng và cả hiệu của chúng là số chia hết cho 2
· a, b, c cùng lẻ --> đương nhiên chọn bất kỳ cặp nào cũng có
tổng và cả hiệu của chúng là số chia hết cho 2
a, b, c có 1 cặp là số lẻ --> Hiệu và tổng của 2 số lẻ chia hết cho 2
· a, b, c có 1 cặp là số chẵn --> Hiệu và tổng của 2 số chẵn chia hết cho 2
Hai trường hợp đầu có 3 cặp số thỏa mãn đầu bài
Hai trường hợp cuối có 1 cặp số thỏa mãn đầu bài
---> Vậy có ít nhât 1 cặp số mà tổng và hiệu của chúng chia hết cho 2 (ĐPCM)
Tớ đồng ý vs ý kiến của : lê Phúc Huy
có ít nhat1 cặp số mà tổng hiệu của chúng chia hết cho 2
tk tớ nha
Ta có:
a ; a + 1 ; a + 2 ; a + 3 ; a + 4
Giả sử a + a + 1 + a + 2 = 3a + 3 chia hết cho 3
Vậy trong 5 số tự nhiên bất kì thì tổng của 3 số luôn chia hết cho 3 ( đpcm )
Cho 10 số nguyên bất kì ( đôi một khác nhau) chứng minh ta luôn tìm được 4 số có tổng chia hết cho 25 trong 10 số đã cho
cho năm số tự nhiên bất kì chứng minh rằng ta luôn chọn được 3 số có tổng chia hết cho 3
các bạn giúp mình trình bày ra nhé!!!!!!!!!!!!!1
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Chứng minh rằng :
a) Trong 11 số tự nhiên liên tiếp có ít nhất 2 số có hiệu chia hết cho 10
b) Trong 100 số tự nhiên liên tiếp luôn có 2 số có tổng chia hết cho 50
c) A = 30 + 31 + 32 + ...... + 32008 có chữ số tậnCho cùng là 1
d) Cho 20 số nguyên bất kỳ, sao cho tổng 5 số tự nhiên bất kì là 1 số nguyên âm, chứng minh rằng trong 20 số đó có ít nhất 15 số nguyên âm
e) Trong 29 số tự nhiên liên tiếp luôn tồn tại 5 số chia hết cho 7
Các bạn làm ơn giúp mình với !!!!
a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10
Ta thấy : ( a + 10 ) - a = 10 .
Mà 10 lại chia hết cho 10
Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn )
b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99
Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100
( 50a + 48 ) + ( 50a + 52 ) = 100a + 100
( 50a + 1 ) + ( 50a + 49 ) = 100a + 50
Mà 50 và 100 thì lại chia hết cho 50
Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50
Chứng minh rằng trong 52 số nguyên dương bất kì ta luôn tìm được hai số sao cho tổng của chúng chia hết cho 100
Ta xét 51 nhóm sau:
Nhóm 1: Các số tự nhiên chia hết cho 100
Nhóm 2: Các số tự nhiên chia 100 dư 1 và 99
Nhóm 3: Các số tự nhiên chia 100 dư 2 và 98
...
Nhóm 51: Các số tự chia 100 dư 50
Nếu có 2 số cùng chia hết cho 100 thì bài toán đã chứng minh
Nếu không có 2 số chia hết 100 thì ta làm như sau:
Vì có 52 số mà có 51 nhóm nên theo nguyên lí Đi rich lê phải có 1 nhóm có tổng hoặc hiệu chia hết cho 100
=> Đpcm
đây nha bạn chúc bạn học tốt
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết
Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100
Theo Đi-rich-lê ta có trong 51 số đã giả sử ở trên luôn tồn tại 2 số mà số dư của chúng khi chia cho 100 cùng rơi vào 1 cặp trong 50 cặp ở trên
=> tổng của chúng chia hết cho 100
=> dpcm
HT nha bn
Chứng minh trong 52 số nguyên dương bất kì luôn tìm được hai số sao cho tổng hoặc hiệu của hai số đó chia hết cho 100
Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)
Đặt \(b_i=-a_i\left(1\le i\le51\right)\)
Xét 102 số : \(a_i\)và \(b_i\)
Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)
=> \(a_i+a_j⋮100\)