A = 1/3 + 1/15 + 1/35 + 1/63 +1/99 + .............. + 1/4088483 là dạng gì lớp mấy
Ai biết dạng này là dạng j ko
A = 1/3 + 1/15 + 1/35 + 1/63 +1/99 + .............. + 1/4088483 là dạng gì
Đây là dạng tính nhanh tổng các phân số mà mỗi phân số có tử số bằng hiệu hai thừa số dưới mẫu mà thừa số thứ nhất của mẫu này là thừa số thứ hai của mẫu kia em nhé
A = 1/3 + 1/15 + 1/35 + 1/63 +1/99 + .............. + 1/4088403
Có vẻ bạn bị sai đề bài ở chỗ 4088403 nếu là 4088483 sẽ giải được
\(A=\dfrac{1}{3}+\dfrac{1}{3.5}+\dfrac{1}{7.5}+\dfrac{1}{7.9}+...+\dfrac{1}{2021.2023}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=1-\dfrac{1}{2023}\)
\(=\dfrac{2022}{2023}\)
A = 1/3+1/15+1/35+1/63+1/99+1/143+1/195=?
Giải:
Đặt A = 1/3+1/15+1/35+1/63+1/99+1/143+1/195
2A= 2/(1.3) + 2/(3.5) + 2/(5.7) + 2/(7.9)+2/(9.11) + 2/(11.13)+2/(13.15)
2A=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9...
2A=1/1-1/15=14/15
Vậy A=14/15 : 2 = 7/15
Nhấn đúng mk nha Tran Dan
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+..+\frac{1}{143}+\frac{1}{195}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{13.15}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{13}-\frac{1}{15}\)
= \(1-\frac{1}{15}=\frac{14}{15}\)
tick đúng nha
A = \(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{13\times15}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)\)
A = \(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\times\left(1-\frac{1}{15}\right)=\frac{7}{15}\)
a ) A = 1/3 + 1/15 + 1/35 + 1/63 + 1/99 + 1/143
b) x + ( x + 1 ) + ( x + 2 ) + ....+ ( x + 99 ) = 14950
éc ô éc
a) \(A=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.10}+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{100}\right)+\dfrac{1}{143}=\dfrac{1}{2}.\dfrac{99}{100}+\dfrac{1}{143}=\dfrac{99}{200}+\dfrac{1}{143}=\dfrac{99.143+200.1}{200.143}=\dfrac{14157+200}{28600}=\dfrac{14357}{28600}\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=14950\)
\(\Rightarrow x+x+...+x+\left(1+2+...+99\right)=14950\)
\(\Rightarrow100x+\left(\left(99+1\right):2\right).99:2=14950\)
\(\Rightarrow100x+2475=14950\Rightarrow100x=12475\Rightarrow x=\dfrac{12475}{100}=\dfrac{499}{4}\)
tính nhanh: A = 1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999
Trả lời: A = ...
(Nhập kết quả dưới dạng phân số tối giản)
1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999 =
= 1/(3x5) + 1/(5x7) + 1/(7x9) + ... + 1/(99x101)
= (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ...+ 1/99 - 1/101) : 2
= (1/3 - 1/101) : 2
= 98/303 : 2
= 49/303
tick nha
bạn ấn vào đúng 0 sẽ hiện ra kết quả, dễ lắm bạn ạ
1/3+1/15+1/35+1/63+1/99+1/143
Đặt phép tính cần tìm là A
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=1-\dfrac{1}{13}\)
\(2A=\dfrac{12}{13}\)
\(A=\dfrac{6}{13}\)
\(A=\dfrac{1}{3}+\dfrac{1}{15}+...+\dfrac{1}{143}\\ =\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\\ =\dfrac{1}{2}\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\\ =\dfrac{1}{2}\times\dfrac{12}{13}\\ =\dfrac{6}{13}\)
Tính:P=1/3+1/15+1/35+1/63+1/99 Help gấp
P=1/3+1/15+1/35+1/63+1/99
=1:3+1:15+1:35+1:63+1:99
=1:(3+15+35+63+99)
=1:215
=1/215
Vậy:P=1/215
1/3+1/15+1/35+1/63+1/99+……+1/9999
1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101
1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101
A= 1/15+1/35+1/63+1/99
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{9.11}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)(tắt 1 bước nha)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{9}-\frac{1}{11}\)
\(2A=\frac{1}{3}-\frac{1}{11}\)
\(2A=\frac{8}{33}\)
\(\Rightarrow A=\frac{4}{33}\)
Vậy A=_____________