Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Love Muse
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2023 lúc 10:14

loading...

Đặng An Nguyên
Xem chi tiết
Nguyễn Triệu Yến Nhi
8 tháng 5 2015 lúc 10:57

 

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(2A=\frac{1}{1}-\frac{1}{100}\)

\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)

Câu B và C làm tương tự.

Đỗ Lê Tú Linh
8 tháng 5 2015 lúc 11:12

bạn Nhi làm sai rồi

\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được

\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)

kết quả là : \(\frac{49}{100}\)

pewpew
Xem chi tiết
Nguyễn Đức Trí
25 tháng 7 2023 lúc 10:19

Bài 1 :

\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)

Ta thấy :

\(3=2^2-1\)

\(15=4^2-1\)

\(35=6^2-1\)

.....

\(9999=100^2-1\)

\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)

\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)

\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)

pewpew
25 tháng 7 2023 lúc 10:26

nhanh len nhé mik đang cần gấp ai lam trước mik tích cho

 

Nguyễn Đức Trí
25 tháng 7 2023 lúc 11:14

Bài 6 :

\(C=1^2+2^2+...+100^2=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}=\dfrac{100.101.201}{6}=338350\)

Bài 9 :

\(S=1^2+2^2+3^2+...+99^2=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}=\dfrac{99.100.199}{6}=328350\)

Phạm Bảo Ly
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2023 lúc 16:33

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt

 

 

Ta thi thu huong
Xem chi tiết
Đàm Thuận Khải
Xem chi tiết
HuyR
9 tháng 5 2020 lúc 17:24

nhào vô  $$$$$$$$$$ cho money

Khách vãng lai đã xóa
Hn . never die !
9 tháng 5 2020 lúc 17:27

Trả lời :

Bn HACK NICK FRÉ FIRE đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

Khách vãng lai đã xóa
HuyR
11 tháng 5 2020 lúc 11:00

Akayuma roi vao hoancanhkho khan hoi anh can lam gi ai dich được   

Khách vãng lai đã xóa
Erza Scarlet
Xem chi tiết
Đỗ quang Hưng
15 tháng 4 2017 lúc 15:34

mình ko biết k nha mình đang âm

Giáp Khánh Ngọc
Xem chi tiết
Nguyễn Linh Chi
23 tháng 9 2020 lúc 12:39

Ta có: 

\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)

=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)

=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)

=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)

Đặt: \(B=1+6+6^2+...+6^{99}\)

=> \(6B=6+6^2+6^3+...+6^{100}\)

=> 6 B - B = \(6^{100}-1\)

=> B = \(\frac{6^{100}-1}{5}\)

=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)

=> \(A=\frac{499.6^{100}+1}{25}\)

Khách vãng lai đã xóa
Như An
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 18:12

Bài 1:

\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)

\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)

\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)

\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bài 2: 

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)