A= 1/1x2+ 1/2x3 + 1/3x4 +............+ 1/99x100 và 1
A=1/1x2+1/2x3+1/3x4+......+1/99x100
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
A= 1/1x2 + 1/2x3 + 1/3x4 + .........+1/99x100
A=1/1x2+1/2x3+...+1/99x100
A=1-1/2+1/2-1/3+1/3-...+1/99-1/00
A=1-1/100
A=99/100
1/1x2 +1/2x3 +1/3x4+…+1/99x100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100=99/100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
Tính A= 1/1x2+1/2x3+1/3x4+........+1/98x99+1/99x100
1/1x2 + 1/2x3 + 1/3x4 + ... + 1/99x100 + 1/100x101 = ...
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
1/1x2+1/2x3+1/3x4+...+1/99x100=?
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy.....
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}.\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
1/1x2 + 1/2x3 + 1/3x4 +......+1/98x99 + 1/99x100
1/1.2 +1/2.3 +1/3.4 +...+1/98.99 +1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100
=1-1/100=100/100-1/100=99/100
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}\)
1/1X2 + 1/2X3 + 1/3X4 +...+1/99X100+ 1/100X101
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
201/101 nhé bạn
CÁC BẠN LƯỚT QUA NHỚ TICK CHO MÌNH NHÉ
AI TICK MÌNH MÌNH TICK LẠI CHO
TICK MÌNH ĐƯỢC MAY MẮN CẢ NĂM
Tinh: 1/1x2+1/2x3+1/3x4+...+1/99x100