Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Hoàng Thảo Ngân
Xem chi tiết
Phùng Minh Quân
25 tháng 4 2018 lúc 19:39

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

Nguyễn Thanh Hiền
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

Myy_Yukru
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{21}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{51}{51}-\frac{1}{51}\)

\(A=\frac{50}{51}\)

\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(A=\frac{21}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)

\(A=\frac{21}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33.\frac{4}{21}\)

\(A=33\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{49}{99}\)

trần thị thu thủy
Xem chi tiết
dinhkhachoang
2 tháng 4 2016 lúc 15:48

A=3/1.3+3/3.5+3/5.7+............+3/49.51

A=3/1-3/3=3/3-3/5+3/5-3/7+...............+3/49-3/51

A=1-1/3+1/3-1/5+1/5-1/7+.....................+1/39-1/51

A=1-1/51

A=50/51

huyen vu thi
2 tháng 4 2016 lúc 15:53

A\(=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...\frac{1}{49.51}\right) \)

    \(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\frac{2}{49.51}\right)\)

  \(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

     =\(\frac{3}{2}\left(1-\frac{1}{51}\right)\) 

    \(=\frac{3}{2}.\frac{50}{51}\)   

  \(=\frac{25}{17}\)

huyen vu thi
2 tháng 4 2016 lúc 15:55

ko tin cu an thu nguyen cai cum dau vao may tinh cer :v

minh
Xem chi tiết
soyeon_Tiểu bàng giải
7 tháng 8 2016 lúc 15:55

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

Hồ Thu Giang
7 tháng 8 2016 lúc 15:56

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=3.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{50}\right)\)

\(A=\frac{3}{2}.\frac{49}{50}\)

\(A=\frac{147}{100}\)

quang anh nguyễn
7 tháng 8 2016 lúc 16:01

A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)

\(\frac{1}{2}\).A=\(\frac{3}{1.3.2}+\frac{3}{3.5.2}+\frac{3}{5.7.2}+....+\frac{3}{49.51.2}\)

\(\frac{1}{2}.A\)=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\)

\(\frac{1}{2}.A\)=\(1-\frac{1}{51}\)

\(\frac{1}{2}.A\)=\(\frac{50}{51}\)

A=\(\frac{50}{51}.2\)

A=\(\frac{100}{51}\)

Lê Nam Khánh0103
Xem chi tiết
Lê Trần Ngọc Hằng
18 tháng 6 2020 lúc 12:48

ta có A=3/1*3+3/3*5+3/5*7+...+3/49*51

=> A=3*1/2*(2/1*3+2/3*5+..+2/49*51)

=> A=3/2*(1-1/3+1/3-1/5+..+1/49-1/51)

=> A=3/2*(1-1/51)

=> A= 3/2* 50/51

=> A= 25/17 

Khách vãng lai đã xóa
Vũ  Thị Minh Thư
Xem chi tiết
Lê Minh Vũ
5 tháng 8 2017 lúc 14:47

\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{4}{8}-\frac{1}{8}\)

\(=\frac{3}{8}\)

\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)

\(=1-0-0-0-...-0-\frac{1}{16}\)

\(=1-\frac{1}{16}\)

\(=\frac{15}{16}\)

\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}\)

\(=\frac{25}{17}\)

\(d,\)giống câu a tự làm nha mỏi tay quá.

Bùi Thế Hào
5 tháng 8 2017 lúc 14:51

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)

=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)

=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)

nguyễn tuấn thảo
5 tháng 8 2017 lúc 14:54

1/2*3+1/3*4+1/4*5+...+1/7*8

1/2-1/3+1/3-1/4+1/4-1/5-...-1/8

1/2-1/8=3/8

1/4-1/7+1/7-1/10+1/10-1/13-...-1/52                                   49/52 bạn nhé

1/4-1/52=3/13

câu này mình gọi nó là S

ta có S:2=2/1*3+2/3*5+...+2/49*51

1/1-1/3+1/3-1/5+...+1/49-1/51

1/1-1/51=50/51

S=50/51*2=100/51

1/100-1/101+1/101-1/102+1/102-1/103+...+1/2010-1/2011

1/100-1/2011

bạn tích đi nhé mình còn phải đi học bạn k cho mình nhé

Trần Nhật Duy
Xem chi tiết
Aboncadel
13 tháng 2 2015 lúc 19:04

a) 1/1 - 1/3 +1/3 - 1/5 +........+1/49 - 1/51

=1/1 - 1/51 (các số liền kề nhau cộng lại bằng 0)

=50/51

còn câu b bạn tự giải

nhớ thank mik nha!!!!!

Trần Văn Hiện
14 tháng 2 2015 lúc 12:12

b,khoảng cách của nó là 3 mà tử của nó bằng 3 chứng  tỏ nó là dạng đủ 

1/1-1/4+1/4-1/7+...+1/97-1/100

1-1/100=99/100

sarahngọc
Xem chi tiết
Nguyễn Hoàng Vũ
2 tháng 2 2015 lúc 22:04

=1/2.(2/1.3 + 2/3.5 + 2/5.7 +.....+ 2/49.51)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/49-1/51)

=1/2.(1-1/51)

=1/2.50/51

=25/51

Nàng Tiên Rừng Xanh
2 tháng 2 2015 lúc 19:54

=1/2.(2/1.3 + 2/3.5 + 2/5.7 +.....+ 2/49.51)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/49-1/51)

=1/2.(1-1/51)

=1/2.50/51

=25/51

Mạnh Lê
10 tháng 4 2017 lúc 17:51

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2.}\left(1-\frac{1}{1}+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\frac{50}{51}\)

\(=\frac{25}{51}\)

Diep Tran
Xem chi tiết
Nguyễn Tuấn Minh
6 tháng 4 2017 lúc 12:30

\(A=\frac{17}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{17}{2}.\left(1-\frac{1}{51}\right)\)

\(A=\frac{17}{2}.\frac{50}{51}\)

\(A=\frac{25}{3}\)

Quản gia Whisper
Xem chi tiết
Quản gia Whisper
9 tháng 4 2016 lúc 11:26

C=\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

C=\(\frac{1}{6}\left\{\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right\}\)=\(\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}+....+\frac{1}{31}-\frac{1}{37}\right)\)

C=\(\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{36}{222}=\frac{6}{37}\)

D=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+......+\frac{3}{49.51}\)

D=\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)

D=\(\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

D=\(\frac{3}{2}\left(1-\frac{1}{51}\right)=\frac{3}{2}.\frac{50}{51}\)

D=\(\frac{150}{102}\)=\(\frac{25}{17}\)