a) Cho đa thức A(x) = x15– 15x14+15x13-15x12+…+15x3-15x2+15x-15.
Tính A(14).
b) Cho đa thức f(x) thỏa mãn điều kiện :
x.f(x-4) = (x-2).f(x).
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
a) Cho đa thức A(x) = x15– 15x14+15x13-15x12+…+15x3-15x2+15x-15. Tính A(14).
b) Cho đa thức f(x) thỏa mãn điều kiện : x.f(x-4) = (x-2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
HELP ME!
Pn ơi cho mk hỏi tất cả "x" đều là ẩn phải hông?
Cho đa thức A(x) = x15– 15x14+15x13-15x12+…+15x3-15x2+15x-15. Tính A(14).
Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) Ta có:
A(x)= x^15-(x+1)x^14+(x+1)x^13-(x+1)x^12+...+(x+1)x^3-(X+1)^2+(x+1)x-15
=x^15-x^15-x^14+x^14+x^13-x^13-...+X^4+x^3-X^3-x^2+x^2-x-15
=x-15
=> A(14)=14-15=-1
Vậy A(14)=-1
k mình nha
a) Cho đa thức A(x) = x15- 15x14+15x13-15x12+...+15x3-15x2+15x-15. Tính A(14).
b) Cho đa thức f(x) thỏa mãn điều kiện : x.f(x-4) = (x-2).f(x).Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) ta có:
A(x)= x15-(x+1)x14+(x+1)x13-(x+1)x12+...+(x+1)x3-(x+1)x2+(x+1)x-15
= x15-x15-x14+x14+x13-x13-x12+...+x4+x3-x3-x2+x2-x-15
= x-15
=> A(14) = 14-15=-1
Vậy A(14) = -1
b.* Với x=0 ta có:
0.f(-4)=-2.f(0)
=> 0=-2.f(0) => f(0)=0
=> đa thức f(x) có 1 nghiệm là 0 (1)
* với x=2 ta có: 2.f(-2)=0.f(2)
=> 2.f(2)=0 => f(2)=0
=> 2 là nghiệm của đa thức f(x) (2)
Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x-2)=(x-4).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x + 1) = (x+2).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
tham khảo nha
https://olm.vn/hoi-dap/detail/77562326250.html
Câu hỏi của Đoàn Ngọc Minh Anh - Toán lớp 7 - Học toán với OnlineMath
Xét x = 0
=> 0. f(1) = 2.f(0)
=> 0 = 2. f(0)
=> f(0) = 0
=> x = 0 là nghiệm của đa thức f(x) ( 1 )
Xét x = - 2
=> - 2. f(-1) = 0.f(-2)
=> - 2. f(-1) = 0
=> f(-1) = 0
=> x = -1 là nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm
Study well ! >_<
Cho đa thức f(x) thoả mãn điều kiện : x.f(x-2)=(x-4).f(x) . Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm
Giup mình với nhé
a. cho đa thức A(x)= x2-1514+15x13-15x12+...+15x3-15x2+15x-15
tính A(14)
b. cho đa thức f(x) thõa mãn điều kiện
x.f(x-4)=(x-2).f(x)
chứng minh rằng đa thức f(x) có ít nhất hai nghiệm
*giải giúp mình với
a) đề sai không làm đc
b)Với x=0
=>0.f(-4)=-2.f(0)
=>f(0)=0
=>x=0 là nghiệm của f(x)
Với x=2
=>2.f(-2)=0
=>f(-2)=0
=>-2 là nghiệm của f(x)
Vậy đpcm