Cho tam giác ABC cân tại A có góc B= 75*57'19''. Gọi I là trung điểm của AB. Tính góc ACI
Cho tam giác ABC cân tại A,có I là trung điểm của AB. Biết góc B = 750 50’ 19”.
Tính góc ACI.
Tam giác ABC cân tại A. Gọi I là trung điểm BC. Vẽ IH vuông góc với AB( H thuộc AB), IK vuông góc với AC(K thuộc AC). Chứng minh rằng:
a) Tam giác ABI = Tam giác ACI
b)Tam giác ΔHBI = Tam giác KCI
c) Cho AC = 13cm, IC = 12cm. Tính AI
Giúp mình với ạ, mình đang cần gấp!
a. Xét 2 tam giác ABI và ACI:
AI chung
AB = AC(tam giác ABC cân tại A)
IB = IC (I là trung điểm của BC)
=> tam giác ABI = tam giác ACI (c-c-c) (đpcm)
=> BI = CI (2 cạnh tương ứng)
b. HI ⊥ AB => H = 90o
KI ⊥ AC => K = 90o
Xét tam giác HBI và tam giác KCI:
H=K=90o
BI = CI(cma)
B = C (tam giác ABC cân tại A)
=> tam giác HBI = tam giác KCI
c. ta có tam giác HBI = tam giác ACI
=> AIB = AIC (2 góc tương ứng)
Mà 2 góc này ở vị trí kề bù.
=> AIB = AIC= \(\dfrac{180^o}{2}\)= 90o
=> tam giác AIC vuông tại I
Áp dụng định lí Py-ta-go vào tam giác AIC, ta có:
AI2 = AC2 - IC2
= 169 - 144 = 36
=> AI = 6 cm
1.cho tam giác ABC có AB =AC .gỌI là trung điểm AB .Vẽ D sao cho B là trung điểm AD .Chứng minh CD = 2CM
2.Cho tam giác ABC (AB =AC ) có góc ABC=80 độ . Trong tam giác lấy điểm I sao cho góc IAC = 10 độ: ACI = 30 độ . Vẽ tia phân giác góc BAI cắt tia Ci tại K
a)Tính góc AIB và góc ICB
b)TÍnh góc KAC và góc KCA
c)Tính góc BKC
cho tam giác abc cân tại a góc a bằng 50 độ. Gọi i là trung điểm của bc, trên tia đối của tia ia lấy d sao cho ia=id. a, chứng minh tam giác abi= tam giác aci và ai vuông góc với bc? b, chứng minh ab=cd và tính số đo góc idc? c, trên 1 nửa mặt phẳng bờ bc không chứa a kẻ be vuông góc với bc sao cho be=ai, gọi ô là trung điểm của bi. chứng minh ba điểm a, ô, e thẳng hàng?
Cho tam giác ABC nhọn ,lấy I thuộc miền trong tam giác ABC : góc IBA= góc ICA .Vẽ IE vuông góc AB ,IF vuông góc AC .Gọi D,K,H là trung điểm của IB,BC,CI
a) c/m góc BED= góc ACI
b) c/m tam giác EKF cân
Cho tam giác ABC vuông tại có AC=AB,gọi I là tung điểm của BC.CMR
a,tam giác AIC= tam giác AIB
b.AI vuông góc BC
c,tính ACI
a: Xét ΔAIC và ΔAIB có
AI chung
IC=IB
AC=AB
Do đó: ΔAIC=ΔAIB
cho tam giác ABC có AB = AC , gọi I là trung điểm của BC a. chứng minh tam giác ABI= tam giác ACI
b.kẻ đường thẳng qua I và vuông góc với AB tại D.Trên tia đối của tia ID lấy điểm E sao cho ID = IE .Chứng minh AB song song CE
c.kẻ EK vuông góc với BC tại K ,cắt mạnh AC tại H .Chứng minh HD vuông góc với AI
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
b: Xét tứ giác BDCE có
I là trung điểm chung của BD và CE
nên BDCE là hình bình hành
=>CE//AB
Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, qua C kẻ tia Cy vuông góc với AC, gọi I là giao điểm của Bx và Cy.
a) CM tam giác ABI = tam giác ACI
b) Chứng tỏ AI là đường trung trực của đoạn BC
Vẽ hình luôn nha
Cho tam giác ABC cân tại A. Gọi I là trung điểm cạnh BC, kẻ ID vuông góc với AB tại D, kẻ IE vuông góc với AC tại E.
a) CM: tam giác ABI = tam giác ACI.
b) CM: tam giác BDI = tam giac CEI
c) CM: DE song song với BC
d) CM: AB^2 = AD^2 + BD^2 + 2DI^2
Mình làm phần d) thôi nhé!
Theo phần a) ta có được: \(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng:
Tam giác ABI = Tam giác ACI)
mà \(\widehat{AIB}+\widehat{AIC}=180\)(2 góc kề bù)
=>\(\widehat{AIB}=\widehat{AIC}=90\)
Xét tam giác ABI vuông tại I, áp dụng định lí py-ta-go ta có:
\(AB^2=AI^2+BI^2\)(1)
Xét tam giác ADI vuông tại D, áp dụng định lí py-ta-go ta có:
\(AI^2=AD^2+DI^2\)(2)
Xét tam giác BDI vuông tại D, áp dụng định lí py-ta-go ta có:
\(BI^2=DI^2+BD^2\)(3)
Thay (2),(3) vào (1) ta có được:
\(AB^2=AD^2+DI^2+DI^2+BD^2\)
(hay) \(AB^2=AD^2+BD^2+2DI^2\)(ĐPCM)