Chứng minh rằng nếu tam giác ABC có góc ABC=2 góc BAC và AC=2BC thì tam giác ABC là tam giác vuông
Chứng minh rằng nếu tam giác ABC có \(\widehat{ACB}=2\widehat{BAC}\)và AC = 2BC thì tam giác ABC là tam giác vuông
Cho tam giác ABC có góc C=2 góc A và AC=2BC. Chứng minh tam giác ABC vuông
1.Cho tam giác ABC có góc A =120 độ.Kẻ Ax là tia phân giác góc A.Trên tia Ax lấy điểm E sao cho AE=AB+AC.Lấy điểm D sao cho AD=AB
Chứng minh rằng;
a,tam giác ABC =tam giác DBE
b,tam giác BCE là tam giác đều
2.Cho tam giác ABC nhọn có AB<AC,góc BAC < 90 độ.Đường trung trực của BC cắt tia phân giác của góc BAC tại I.Kẻ ID vuông góc với AB tại D,kẻ IE vuông góc với AC tại E
Chứng minh rằng :
tam giác EFC=tam giác ECI
Cho tam giác ABC, lấy M là trung điểm của BC.Chứng minh rằng:
a)Nếu AM>1/2BC thì góc BAC là góc nhọn
b)Nếu AM=1/2BC thì góc BAC là góc vuông
c)Nếu AM<1/2BC thì góc BAC là góc tù
Cho tam giác ABC có BH vuông góc AC và BH = 1/2 AC và góc BAC= 75 độ . Chứng minh tam giác ABC cân tại C
Cho tam giác ABC có AB=AC , AH là tia phân giác của góc BAC (H e BC)
CM rằng :
a, Tam giác AHB=tam giác AHC ; HB=HC
b, AH vuông góc vs BC
c,Gọi K là trung điểm của AC . Chứng minh rằng : Giao điểm G của AH và BK là trọng tâm của tam giác ABC
d, Giả sử AH=9cm . Tính AG (giúp vs)
a: Xét ΔABH và ΔACH co
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
b: ΔACB cân tại A
mà AH là phân giác
nên AH vuông góc BC
c: Xét ΔACB có
AH,BK là trung tuyến
AH cắt BK tại G
=>G là trọng tâm
d: AG=2/3AH=6cm
Bài 1: Cho tam giác ABC cân tại A. BH là đường vuông góc hạ từ B đến AC. Chứng minh rằng BAC = 2CBH ( BAC và CBH là góc nha)
Bài 2: Cho tam giác ABC cân tại A, góc A= 30 độ. Trên các cạnh AB, AC lấy các điểm Q, P tương ứng sao cho góc QPC = 45 độ và PQ = BC. Chứng minh BC = CQ
Bài 3: Cho tam giác ABC cân tại B có góc B= 30 độ. Kẻ đường vuông góc từ B đến AC, cắt AC tại H. Trên BH lấy điểm D sao cho BD = AC. Chứng minh tam giác ADC đều
cho tam giác ABC có góc ABC=30;AC=1/2BC. Chứng minh tam giác ABC vuông tại A?
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A