Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Aura Phạm
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Trà My
30 tháng 5 2017 lúc 23:18

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

Trà My
30 tháng 5 2017 lúc 22:56

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

Đặng Tuấn Anh
Xem chi tiết
Online Math
25 tháng 5 2017 lúc 20:35

1.

Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:

         \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

tương tự, ta có:

         \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)

         \(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)

Cộng theo vế của 3 BĐT trên, ta được:

     \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)        (ĐPCM)

ý b nghĩ đã ~.~

Online Math
25 tháng 5 2017 lúc 20:41

2. 

P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)

Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!

s2 Lắc Lư  s2
25 tháng 5 2017 lúc 21:10

mik vẫn chưa hình dung cách lm câu b của bạn kia,,,,,

theo mik thì tek này nè: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)

lm tương tự r cộng lại,,,ok???

Bưu Ca
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Witch Rose
Xem chi tiết
Thắng Nguyễn
6 tháng 9 2017 lúc 1:09

\(A=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)

Có BĐT phụ \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\)

\(\Leftrightarrow\frac{\frac{-x^2\left(27x^6-54x^4+27x^2-4\right)}{4\left(x-1\right)^2\left(x+1\right)^2}}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{y}{1-y^2}\ge\frac{3\sqrt{3}}{2}y^2;\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}z^2\)

Cộng theo vế  3 BĐT trên ta có;

\(A\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bài này ngoài cách này còn có 1 cách khá trâu mà giờ mỏi v~ ý cần thêm thì ib 

alibaba nguyễn
6 tháng 9 2017 lúc 6:41

Bài làm thì m không ý kiến nhưng mà m nghĩ cái bất đẳng thức phụ bác nên chứng minh lại đi. Ai lại cố gắng làm cho nó thành 1 đống rồi khẳng định đống đó là đúng bao giờ. Làm thế thì không phải bài chứng minh rồi.

Thắng Nguyễn
6 tháng 9 2017 lúc 11:09

Ý hungnguyn là c/m hết à .-. 

\(\frac{x}{1-x^2}-\frac{3\sqrt{3}}{2}x^2\ge0\)\(\Leftrightarrow\frac{\left(\frac{x}{1-x^2}\right)^2-\left(\frac{3\sqrt{3}}{2}x^2\right)^2}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\)

\(\Leftrightarrow\frac{\frac{x^2}{x^4-2x+1}-\frac{27x^4}{4}}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\)\(\Leftrightarrow\frac{\frac{-x^2\left(27x^6-54x^4+27x^2-4\right)}{4\left(x-1\right)^2\left(x+1\right)^2}}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\)

\(\Leftrightarrow\frac{\frac{-x^2\left(3x^2-4\right)\left(3x^2-1\right)^2}{4\left(x-1\right)^2\left(x+1\right)^2}}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\) tự đánh giá nốt nhé .-.

Witch Rose
Xem chi tiết
minhduc
3 tháng 10 2017 lúc 13:12

Ta có : \(x^2+y^2+z^2=1\)

\(\Rightarrow\hept{\begin{cases}x^2+y^2=1-z^2\\y^2+z^2=1-x^2\\x^2+z^2=1-y^2\end{cases}\left(1\right)}\)

\(A=\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\)

Từ \(\left(1\right)\Rightarrow A=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)

\(\Rightarrow A=\left(\frac{x}{1-x^2}+\frac{y}{1-y^2}\right)+\frac{z}{1-z^2}\)

tth_new
21 tháng 8 2019 lúc 20:27

Nếu \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow A=\frac{3\sqrt{3}}{2}\). Ta sẽ chứng minh đó là min A. Thật vậy:

BĐT<=> \(\Sigma_{sym}\frac{x}{y^2+z^2}=\Sigma_{sym}\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}.\Sigma x^2\)

Ta sẽ chứng minh \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{1}{x\left(1-x^2\right)}\ge\frac{3\sqrt{3}}{2}\)

\(\Leftrightarrow\frac{1}{2}.\left[2x^2\left(1-x^2\right)\left(1-x^2\right)\right]\le\frac{4}{27}\)

BĐT này đúng theo AM-GM nên \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\). Thiết lập tương tự hai bđt kia rồi cộng theo vế ...

P/s: dùng AM-GM thế này đúng ko ta?

Nguyễn Tuấn Hào
Xem chi tiết
Nguyễn Ngọc Giao
8 tháng 5 2021 lúc 9:56

SEIFWJNHGRHFQ24FTW

Khách vãng lai đã xóa
Mon Yi
Xem chi tiết