Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaioken
Xem chi tiết
Pain Thiên Đạo
27 tháng 5 2018 lúc 20:14

tích đi rồi ta làm

Ơ Ơ BUỒN CƯỜI
27 tháng 5 2018 lúc 20:23

Nếu \(x_o\)là nghiệm của phương trình đã cho thì \(x_o\ne0\)

\(x_o^4+ax_o^3+bx_o^2+ax_o+1=0\)

Chia 2 vế cho \(x_o^2\), ta được : 

\(\left(x_o^2+\frac{1}{x_o^2}\right)+a\left(x_o+\frac{1}{x_o}\right)+b=0\)(I) 

Đặt \(t=x_o+\frac{1}{x_o}\)\(\left|t\right|=\left|x_o+\frac{1}{x_o}\right|=\left|x_o\right|+\left|\frac{1}{x_o}\right|\ge2\)

Từ (I) , => \(t^2+at+b-2=0\Rightarrow t^2=-at-b+2\)

Áp dụng BĐT B.C.S ta được : 

\(t^4=\left[at+\left(b-2\right)\right]^2\le\left[a^2+\left(b-2\right)^2\right]\left(t^2+1\right)\)

\(\Rightarrow a^2+\left(b-2\right)^2\ge\frac{t^4}{t^2+1}\)

Mà \(\frac{t^4}{t^2+1}\ge\frac{t^4}{t^2+\frac{t^2}{4}}=\frac{4t^4}{5t^2}=\frac{4}{5}t^2\ge\frac{16}{5}\left(\text{vì}:t^2\ge4\right)\)

Vậy ...... 

Kaioken
27 tháng 5 2018 lúc 20:26

@Pain Thiên Đạo : t đỵt cần m` lm nx  

Quách Phương
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2021 lúc 20:12

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Phan Tiến Ngọc
Xem chi tiết
Cao Phan Tuấn Anh
30 tháng 12 2015 lúc 20:34

ai tick đến 190 thì mik tick cho cả đời

Cao Phan Tuấn Anh
30 tháng 12 2015 lúc 20:34

ai tick đến 190 thì mik tick cho cả đời

Phan Tiến Ngọc
30 tháng 12 2015 lúc 23:11

noicho dang hoang

 

hoàng thị huyền trang
Xem chi tiết
Bang Bang 2
1 tháng 8 2018 lúc 10:03

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

AI CHƠI BANG BANG 2 THÌ TÍCH MÌNH

Sách Giáo Khoa
Xem chi tiết
Trần Quang Đài
26 tháng 5 2017 lúc 20:59

Công thức nghiệm của phương trình bậc hai

Thịnh Bùi Đức Phú Thịnh
Xem chi tiết
kaneki_ken
Xem chi tiết
Trần
Xem chi tiết
Ngân Hoàng Trường
Xem chi tiết
Phước Nguyễn
14 tháng 3 2017 lúc 22:29

Ko thì ko lời giải

\(------------\)

Sai đề hử?