CMR nếu phương trình \(x^4+ax^3+bx^2+ax+1=0\)có nghiệm thì \(5\left(a^2+b^2\right)\ge4\).
CMR nếu phương trình :
\(x^4+ax^3+bx^2+ax+1=0\) có nghiệm thì : \(a^2+\left(b-2\right)^2\ge\frac{16}{5}\)
Nếu \(x_o\)là nghiệm của phương trình đã cho thì \(x_o\ne0\)và
\(x_o^4+ax_o^3+bx_o^2+ax_o+1=0\)
Chia 2 vế cho \(x_o^2\), ta được :
\(\left(x_o^2+\frac{1}{x_o^2}\right)+a\left(x_o+\frac{1}{x_o}\right)+b=0\)(I)
Đặt \(t=x_o+\frac{1}{x_o}\); \(\left|t\right|=\left|x_o+\frac{1}{x_o}\right|=\left|x_o\right|+\left|\frac{1}{x_o}\right|\ge2\)
Từ (I) , => \(t^2+at+b-2=0\Rightarrow t^2=-at-b+2\)
Áp dụng BĐT B.C.S ta được :
\(t^4=\left[at+\left(b-2\right)\right]^2\le\left[a^2+\left(b-2\right)^2\right]\left(t^2+1\right)\)
\(\Rightarrow a^2+\left(b-2\right)^2\ge\frac{t^4}{t^2+1}\)
Mà \(\frac{t^4}{t^2+1}\ge\frac{t^4}{t^2+\frac{t^2}{4}}=\frac{4t^4}{5t^2}=\frac{4}{5}t^2\ge\frac{16}{5}\left(\text{vì}:t^2\ge4\right)\)
Vậy ......
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
Nếu phương trình x^4 + ax^3 + bx^2 + ax + 1=0 có nghiệm thì a^2 +(b-2)^2>3.
ai tick đến 190 thì mik tick cho cả đời
ai tick đến 190 thì mik tick cho cả đời
chứng minh rằng nếu phương trình \(ax^2+bx+c=x\left(a\ne0\right)\)vô nghiệm thì phương trình \(a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)cũng vô nghiệm
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
Chứng minh rằng nếu phương trình \(ax^2+bx+c=x\left(a\ne0\right)\) vô nghiệm thì phương trình \(a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\) cũng vô nghiệm
Cmr : nếu phương trình \(ax^4+bx^3+cx^2-2bx+4a=0\left(a#0\right)\)có 2 nghiệm x1;x2 thoả mãn x1.x2=1 thì \(5a^2=2b^2+ac\)
cmr nếu phương trình \(ax^4+bx^3+cx^2-2bx+4a\)\(=0\left(a\ne0\right)\)có 2 nghiệm x1x2=1 thì \(5a^2=2b^2+ac\)
Nếu phương trình X^4 + ax^3 + bx^2 + ax + 1 = 0 có nghiệm thì giá trị nhỏ nhất của a^2 +b^2 là bao nhiêu?
nếu phương trình x^4+ax^3+bx^2+cx+1=0 . Nếu phương trình này có nghiệm thì giá trị nhỏ nhất của a^2+b^2 là....
Ko thì ko lời giải
\(------------\)
Sai đề hử?