Chứng minh rằng đa thức sau vô nghiệm f(x) = x^2 - x - x + 2
Chứng minh rằng đa thức sau vô nghiệm :f(x)=x^2+2x+3
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
Chứng minh rằng đa thức f(x)= x^2-x-1 vô nghiệm
Cho f(x)=x^2-4x+2016
Chứng minh rằng đa thức f(x) vô nghiệm.
Chứng minh rằng đa thức sau vô nghiệm f(x) = -x4 -x2 - 2016
có \(x^4+x^2\ge0\)
=> đa thức trên <0
=> đt trên vô nghiệm
chú ý: đây là toán lớp 8 mà
Chứng minh đa thức f(x)=x^2+x+1 vô nghiệm
Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
hay đa thức \(f\left(x\right)=x^2+x+1\) vô nghiệm
Chứng minh rằng các đa thức sau vô nghiệm
f(x)=x8-x5+x2-x+1
g(x)=x10-x5+x2-x+1
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm
Chứng minh rằng đa thức sau vô nghiệm:
f(x)=x2(x2+1)+x2(x+3)+3x+3
g(x)=x2(x2-x+1)+5x2-5x+5
Chứng minh đa thức sau vô nghiệm:
f(x)=(x−1)(x+2)−(x−3)f(x)=(x−1)(x+2)−(x−3)
g(x)=(3−x)(4+x)−(13−x)
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)-\left(x-3\right)\)
\(=x^2+x-2-x+3\)
\(=x^2+1>1\forall x\)
Vậy \(f\left(x\right)\)vô nghiệm
\(g\left(x\right)=\left(3-x\right)\left(4+x\right)-\left(13-x\right)\)
\(=12-x-x^2-13+x\)
\(=-x^2-1\)
\(=-\left(x^2+1\right)< -1\forall x\)
Vậy \(g\left(x\right)\)vô nghiệm
Chứng tỏ rằng đa thức sau vô nghiệm.
a) f (x) = x2( x2 +1) + x2 ( x +3 ) + 3x + 3
Ta có \(f\left(x\right)=x^4+x^3+4x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\left(x+\frac{2}{5}\right)^2+\frac{12}{5}>0\) với mọi \(x\inℝ\)
Vậy đa thức trên vô nghiệm