Thu gọn phép tính: x-1/x-2:(x-2/x-3:x-3/x-1)
a,cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B. b) Hãy thu gọn Q=(x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q=(x^3-x^2):(x-1) tại x=-1
cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B.
b) Hãy thu gọn Q= (x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q= (x^3-x^2):(x-1) tại x=-1
Thực hiện phép tính ( thu gọn )
( 2x - 1 ) ( 3x + 2 ) ( 3 - x )
Bài 1. Thực hiện phép tính (rút gọn) (2,5đ)
a./ 2x(x+5) -2x2
b./ (x+3)2 + (x-1)(3+2x)
a) \(2x\left(x+5\right)-2x^2=2x^2+10x-2x^2=10x\)
b) \(\left(x+3\right)^2+\left(x-1\right)\left(3+2x\right)=x^2+6x+9+3x+2x^2-3-2x\)
\(=3x^2+7x+6\)
a: \(2x\left(x+5\right)-2x^2=2x^2+10x-2x^2=10x\)
b: \(\left(x+3\right)^2+\left(2x+3\right)\left(x-1\right)\)
\(=x^2+6x+9+2x^2-2x+3x-3\)
\(=3x^2+7x+6\)
Thức hiện các phép tính sau và rút gọn :
a) x^3 / x^2 - 4 - x / x-2 - 2 / x + 2
b) x / 2x - 2 + x^2 + 1 / 2 - 2x^2
a: \(=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
thực hiện phép tính và thu gọn
a) (2x3+x2+x+6):(x2-x+2)
b) \(\frac{x}{x-3}-\frac{5x^2+27}{x^2-9}+\frac{x-9}{x+3}\)
a) \(\frac{2x^3+x^2+x+6}{x^2-x+2}=\frac{\left(2x+3\right)\left(x^2-x+2\right)}{x^2-x+2}=2x+3\)
b) \(\frac{x}{x-3}-\frac{5x^2+27}{x^2-9}+\frac{x-9}{x+3}\)
\(=\frac{x}{x-3}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x-9}{x+3}\)
\(=\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-9\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-12x+27}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+3x-\left(5x^2+27\right)+x^3-12x+27}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x^2-9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x}{x-3}\)
rút gọn bt theo 2 cách ( sd và ko sd tính chất phân phối của phép nhân đối vs phép cộng )
\(\frac{x-1}{x}.x^2+x+1+\frac{x^3}{x-1}\)
1.thực hiện phép tính: \(\sqrt{4-2\sqrt3} \)-\(\dfrac{2}{\sqrt3+1}\)+\(\dfrac{\sqrt{3} -3}{\sqrt{3}-1}\)
2.cho biểu thức B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3} \) + \(\dfrac{2\sqrt{x}-24}{x-9}\) với x ≥ 0, x≠9
a) rút gọn B
b) tìm giá trị của x để biểu thức B=5
Bài `1`
\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)
2:
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b: B=5
=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)
=>\(5\sqrt{x}+15=\sqrt{x}+8\)
=>\(4\sqrt{x}=-7\)(loại)
Vậy: \(x\in\varnothing\)