Chứng minh: (-a/b)n = an/bn (n chẵn, n>0, n thuộc Z; a,b thuộc Z, b khác 0
!!-Chứng minh an+bn=cn (a,b,c,n ϵ Z; a,b,c≠0; n>2) vô nghiệm.
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
cho a,b,c thộc Z và n thuộc số tự nhiên khác 0 , b>0,a>b. Chứng minh rẳng a/b>a+n/b+n
Chứng minh rằng nếu a thuộc Z thì :N =(a-2)(a+3)-(a-3)(a+2) là số chẵn
Ta có:
\(N=\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\)
\(N=a^2+3a-2a-6-\left(a^2+2a-3a-6\right)\)
\(N=a^2+a-6-a^2+a-6\)
\(N=2a\)
Mà: \(2a\) luôn chẵn với mọi a
\(\Rightarrow N\) chẵn với mọi a
N=(a+3)(a-2)-(a-3)(a+2)
=a^2-2a+3a-6-(a^2+2a-3a-6)
=a^2+a-6-a^2+a+6
=2a là số chẵn
Chứng minh :
((5n+2)^2-4) chia hết cho 5 với n thuộc Z
(n^3-n) chia hết cho 6 vs n thuộc Z
a^3+b^3+c^3 = 3abc với a+b+c=0
a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)
b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp
=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6
c, \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)
=>a^3+b^3+c^3=3abc
1) cho A=n-1/2n+3
a) chứng minh A là phân số với mọi n thuộc Z
b) tìm phân số A khi n=0 và n=1
c) tìm n thuộc Z để A thuộc Z
d) tìm n thuộc Z để A tối giản
chứng minh rằng với mọi n thuộc Z và n chẵn thì n3- 4n luôn chia hết cho 48
chứng minh rằng với mọi n thuộc Z và n chẵn thì n3- 4n luôn chia hết cho 48
vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8
mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6
vậy 8(m-1)m(m+1) chia hết cho 48
cho tam giác abc , góc a = 90 độ BM là phân giác góc b , M thuộc AC , N thuộc BC : BN = BA a, tam giác BAM = tam giác BNM b,gọi BM cắt AN tại I chứng minh I là trung điểm AN c, K thuộc tia đối AB sao cho AK=NC chứng minh góc ABC = góc NMC và K,N,M thảng hàng
CỨU EM VS MN ƠI
a: Xét ΔBAM và ΔBNM có
BA=BN
góc ABM=góc NBM
BM chung
=>ΔBAM=ΔBNM
b: ΔBAN cân tại B
mà BI là phân giác
nên I là trung điểm của AN
c: góc NMC+góc AMN=180 độ
góc AMN+góc ABC=180 độ
=>góc NMC=góc ABC