2023-1/2*(1+2)-1/3*(1+2+3)-1/4*(1+2+3+4)-...-1/2022*(1+2+3+4+...+2022)
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}\)
Ta có: \(\frac{2022}{1}+\frac{2021}{2}+\cdots+\frac{1}{2022}\)
\(=\left(\frac{2021}{2}+1\right)+\left(\frac{2020}{3}+1\right)+\cdots+\left(\frac{1}{2022}+1\right)+1\)
\(=\frac{2023}{2}+\frac{2023}{3}+\cdots+\frac{2023}{2023}=2023\left(\frac12+\frac13+\cdots+\frac{1}{2023}\right)\)
Ta có: \(\frac{\left(\frac12+\frac13+\cdots+\frac{1}{2023}\right)}{\frac{2022}{1}+\frac{2021}{2}+\cdots+\frac{1}{2022}}\)
\(=\frac{\left(\frac12+\frac13+\cdots+\frac{1}{2023}\right)}{2023\left(\frac12+\frac13+\cdots+\frac{1}{2023}\right)}\)
\(=\frac{1}{2023}\)
Tính nhanh C=1/1*2*3+1/2*3*4+1/3*4*5+........+1/2021*2022*2023
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
Tìm x, biết:
( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2023}\) ) . x = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) + \(\dfrac{2020}{3}\)
+ ... + \(\dfrac{1}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
2^2+6^3+12^4+......................................+[(k+1)*k]^(k+1)+.......................+(2022*2023)^2023
@Bé Bin bạn có biết cách giải không zậy
\(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)
Giúp mình câu này với ạ
A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)
Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)
TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1
TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)
TS = 2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))
A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)
A = 2023
2. Cho:
B= 1 - 1/2 + 1/3 - 1/4 +...+ 1/2021 - 1/2022 + 1/2023 C= 1/1012 + 1/1013 + 1/1014 +...+ 1/2021 + 1/2022 + 1/2023
Tính: B-C
Ta có; \(B=1-\frac12+\frac13-\frac14+\cdots-\frac{1}{2022}+\frac{1}{2023}\)
\(=1+\frac12+\frac13+\cdots+\frac{1}{2023}-2\left(\frac12+\frac14+\cdots+\frac{1}{2022}\right)\)
\(=1+\frac12+\ldots+\frac{1}{2023}-1-\frac12-\cdots-\frac{1}{1011}=\frac{1}{1012}+\frac{1}{1013}+\cdots+\frac{1}{2023}\)
=C
=>B-C=0
B= 1/2 + 1/3 - 1/4 +...- 1/2022 + 1/2023 C= 1/1012 + 1/1013+...+ 1/2022 + 1/2023
Tính: B-C
mọi người sửa nhanh giúp mik vs ạ
Ta có: \(B=\frac12+\frac13-\frac14+\frac15-\frac16+\cdots-\frac{1}{2022}+\frac{1}{2023}\)
=>\(B=\frac12+\frac13+\frac14+\frac15+\frac16+\cdots+\frac{1}{2022}+\frac{1}{2023}-2\left(\frac14+\frac16+\cdots+\frac{1}{2022}\right)\)
\(=\frac12+\frac13+\frac14+\frac15+\cdots+\frac{1}{2022}+\frac{1}{2023}-\frac12-\frac13-\cdots-\frac{1}{1011}\)
\(=\frac{1}{1012}+\frac{1}{1013}+\cdots+\frac{1}{2022}+\frac{1}{2023}\)
=C
=>B-C=0