3/4*1+3/4*7+3/7*10+........+3/40*43+3/43*46 chứng mính s<1
Cho S = 3/1*4+3/4*7+3/7*10+...+3/40*43+3/43+46. Hãy chứng tỏ S < 1
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1
\(S=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\right)\)
\(S=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\right)\)
\(\Rightarrow S=1-\frac{1}{46}\Rightarrow S< 1\left(đpcm\right)\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
= \(1-\frac{1}{46}< 1\)
\(\Rightarrow S< 1\left(đpcm\right)\)
ChoS= 3/1*4 +3/4*7 +3/7*10 +.......+ 3/40*43 +3/43*46
Chứng tỏ S <1
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy \(S< 1\)
Chúc bạn học tốt !!!
S = 3/1*4 + 3/4*7 + 3/7*10 + ...+3/40*43 + 3/43*46
hãy chứng tỏ S < 1
Các bạn giúp dùm mình với nhé !
giúp mình với đi
các bạn ơi
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}< 1\)
Chứng tỏ S < 1
Ủng hộ mk nha ^_^
S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}=\frac{45}{46}< 1\)
S=1-1/4 + 1/4 - 1/7 +1/7 - 1/10 +...+ 1/40 - 1/43 +1/43 -1/46
= 1-1/46 < 1 (ĐPCM)
cho s=3/1*4+3/4*7+...3/40*43+3/43*46
S=3.(1/1-1/4+1/4-1/7+.........+1/40-1/43+1/43-1/46)
S=3.(1/1-1/46)
S=3.45/46
S=2/43/46
Moi nguoi tra loi thu cau hoi nay nhe ( de thoi ma )
Cho S= 3/1*4+3/4*7+3/7*10+....+3/40*43+3/43*46
Hay chung to rang S < 1
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}=\frac{45}{46}\)
S=1-1/4+1/4-1/7+1/7-1/10+...+1/43-1/46 S=1-1/46 S=45/46 ok S<1
cho s =3/1*4+3/4*7+3/7*10+......+3/43*46.chung minh rang s <1
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{43\cdot46}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}=1-\frac{1}{46}< 1\)
\(\left(\frac{3}{a\cdot\left(a+3\right)}=\frac{a+3-3}{a\cdot\left(a+3\right)}=\frac{1}{a}-\frac{1}{a+3}\right)\)
\(S=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{43\times46}\)
\(3S=3-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+...+\frac{3}{43}-\frac{3}{46}\)
\(3S=3-\frac{3}{46}\)
\(3S=\frac{135}{46}\)
\(S=\frac{45}{46}< 1\)
Vậy ra có điều phải chứng minh
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy S < 1 (đpcm)
Cho S = 3/1x4 + 3/4x7 + 3/7×10 +......+ 3/40×30 + 3/43×46. Hãy chứng tỏ S<1
Ai nhanh mk tích
S=3/1.4+3/4.7+3/7.10+.....+3/40.43+3/43.46
S= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S= 1-1/46
=> S<1
S=3.(1/1-1/4+1/4-1/7+.........+1/40-1/43+1/43-1/46)
S=3.(1/1-1/46)
S=3.45/46
S=2/43/46
=> 2/43/46>1
=>S>1
3/1*4+3/4*7+3/7*10+..+3/40*4+3/43*46
Giúp mình với
cảm ơn các bạn!!!!
= 1 -1/4 +1/4 -1/7 +1/7 -1/10+...+1/40 -1/43 +1/43 -1/46
= 1 -1/46
= 45/46
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}\)
\(=\frac{45}{46}\)
_Chúc bạn học tốt_
3/1×4 + 3/4×7 + 3/7×10 +...+ 3/40×43 + 3/43*46
=1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
=1-1/46
=46/46-1/46
=45/46
7/1*4+7/4*7+7/7+10+...+7/40*43+7/43*46
\(\frac{A}{7}\cdot3=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{43\cdot46}\)
\(\frac{A}{7}\cdot3=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(\frac{A}{7}\cdot3=\frac{45}{46}\)
\(\frac{A}{7}=\frac{15}{46}\)
\(A=\frac{105}{46}\)
Học tốt~