Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4.
a) Lập tỉ lệ thức biểu diễn mối liên hệ giữa số đo ba góc của tam giác ABC.
b) Tính số đo mỗi góc của tam giác.
Tam giác ABC có số đo các góc A;B;C lần lượt tỉ lệ với 1; 2; 3.Tính số đo các góc của
tam giác ABC.
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
\(A^o,B^o,C^o\)lần lượt tỉ lệ với 7:7:16
\(\Rightarrow\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}\)và \(A^o+B^o+C^o=180^o\)( Tổng 3 góc trong của tam giác )
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}=\frac{A^o+B^o+C^o}{7+7+16}=\frac{180^o}{30}=6^o\)
=> góc A = 42o , góc B = 42o , góc C = 96o
Tam giác ABC có số đo các góc A,B,C lần lượt tỉ lệ với 3;4;5. Tính số đo các góc của tam giác ABC.
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)
Do đó: a=45; b=60; c=75
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4. Tính góc B
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180}{9}=20\)
Do đó: b=60
\(\text{Gọi x;y;z lần lượt là góc 1,góc 2,góc 3:}\)
\(\text{ (đk:x;y;z>0,đơn vị:độ)}\)
\(\text{Ta có:}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\text{ và }x+y+z=180^0\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180}{9}=20\)
\(\Rightarrow x=20.2=40^0\)
\(y=20.3=60^0\)
\(z=20.4=80^0\)
\(\text{Vậy số đo góc B là:}60^0\)
tam giác abc có số đo góc a,b,c lần lượt với tỉ lệ 1,2,3.tính số đo các góc tam giác abc
Ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)và a + b + c = 180 o
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180^0}{6}=30^0\)
=> a = 30 o
b = 60 o
c = 90 o
Vậy a = 30 o , b = 60 o , c = 90 o
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Xét \(\Delta ABC:\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( tổng 3 góc trong \(1\Delta\))
Lại có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30^0\)
\(\Rightarrow\hept{\begin{cases}\frac{\widehat{A}}{1}=30^0\\\frac{\widehat{B}}{2}=30^0\\\frac{\widehat{C}}{3}=30^0\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=30^0.1=30^0\\\widehat{B}=30^0.2=60^0\\\widehat{C}=30^0.3=90^0\end{cases}}}\)
Vậy \(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
~ Ủng hộ nhé
cho tam giác ABC có số đo các góc A,B,C lần lượt tỉ lệ với 1,2,3 . Tính số đo các góc tam giác A,B,C [ tổng số đo ba góc trong tam giác là 180 độ ]
Ta có A,B,C tỉ lệ với 1,2,3
==>A/1=B/2=C/3
==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ
Cho tam giác ABC có số đo các góc A,góc B,góc C lần lượt tỉ lệ nghịch với 1/2, 1/3, 2/5. Tính số đo góc A, góc B, góc C.
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2;3;4. Tính B ^
tam giác abc có số đo các góc a; b; c lần lượt tỉ lệ với 1,2,3 tính số đo các góc của tam giác đó
Ta có: góc A, góc B, góc C lần lượt tỉ lệ vs 1;2;3
=> \(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}\)Và góc A + góc B + góc C= 180 độ(định lí tổng 3 góc trog 1 tam giác)
Áp dụng t/c của dãy tỉ số= nhau ta có:
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180^o}{6}=30^o\)
Khi đó : \(\frac{A}{1}=30^o\Rightarrow A=30\)
Làm tương tự vs góc B và góc C
Ban kia lam dung roi do
k tui nha
thanks