Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
love chanyeol
Xem chi tiết
Moon
Xem chi tiết
Đỗ Thanh Hải
10 tháng 3 2021 lúc 19:17

Có thể làm như sau

Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

.......

\(\dfrac{1}{100}< \dfrac{1}{50}\)

=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)

Lại có

\(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

.......

\(\dfrac{1}{99}>\dfrac{1}{100}\)

=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)

=> \(\dfrac{1}{2}< A< 1\)

Vậy A không phải số tự nhiên

Nguyễn Quang Minh
Xem chi tiết

Ta có: \(\frac{1}{51}>\frac{1}{75};\frac{1}{52}>\frac{1}{75};\ldots;\frac{1}{74}>\frac{1}{75};\frac{1}{75}=\frac{1}{75}\)

Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (1)

Ta có: \(\frac{1}{76}>\frac{1}{100};\frac{1}{77}>\frac{1}{100};\ldots;\frac{1}{99}>\frac{1}{100};\frac{1}{100}=\frac{1}{100}\)

Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\cdots+\frac{1}{100}=\frac{25}{100}=\frac14\) (2)

Từ (1),(2) ta có: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}>\frac13+\frac14\)

=>\(S>\frac13+\frac14=\frac{7}{12}\) (3)

Ta có: \(\frac{1}{51}<\frac{1}{50};\frac{1}{52}<\frac{1}{50};\ldots;\frac{1}{75}<\frac{1}{50}\)

Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}<\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{25}{50}=\frac12\) (4)

Ta có: \(\frac{1}{76}<\frac{1}{75};\frac{1}{77}<\frac{1}{75};\ldots;\frac{1}{100}<\frac{1}{75}\)

Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (5)

Từ (4),(5) suy ra \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac12+\frac13\)

=>\(S<\frac56\) (6)

Từ (3),(6) suy ra 7/12<S<5/6

Phạm Bảo Ngọc
Xem chi tiết
Nguyễn Bùi Hà Chi
Xem chi tiết
Nguyễn Đắc Linh
15 tháng 3 2023 lúc 21:10

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2

lục hạ Tô
22 tháng 2 lúc 17:17

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2


Nguyễn Thị Giang
Xem chi tiết
nguyen van tu
15 tháng 3 2015 lúc 8:59

cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2

phạm minh ngọc
13 tháng 5 2016 lúc 15:50
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng) Nên: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
Phan Nguyên Chung
22 tháng 2 lúc 17:01

vì S có 50 phân số.

Ta thấy:

\(\) \(\frac{1}{51}\) >\(\frac{1}{100}\) ;\(\frac{1}{52}\) >\(\frac{1}{100}\) ...;\(\frac{1}{99}\) >\(\frac{1}{100}\) ;\(\frac{1}{100}=\frac{1}{100}\)

\(\rArr s\) >\(\frac{50}{100}\) =\(\frac12\)

\(\rArr s\) >\(\frac12\)

Vậy S>\(\frac12\)

Nguyễn Ngọc Lan
Xem chi tiết
Kiên-Messi-8A-Boy2k6
23 tháng 3 2018 lúc 20:10

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\left(50SH\right)\)

\(\Rightarrow S>\frac{50.1}{100}\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Nguyễn Thị Xuân Tuyết
23 tháng 3 2018 lúc 20:10

nhỏ hơn

Phùng Minh Quân
23 tháng 3 2018 lúc 20:10

Ta có : 

\(S=\frac{1}{51}+\frac{1}{51}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) ( có 50 số \(\frac{1}{100}\) ) 

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~ 

Nguyễn Ngọc Thùy Dương
Xem chi tiết
Dào Minh Phúc
Xem chi tiết

Sửa đề: \(S=\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{100}\)

Ta có: \(\frac{1}{51}<\frac{1}{50};\frac{1}{52}<\frac{1}{50};\ldots;\frac{1}{75}<\frac{1}{50}\)

Do đó: \(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}<\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{25}{50}=\frac12\) (1)

Ta có: \(\frac{1}{76}<\frac{1}{75};\frac{1}{77}<\frac{1}{75};\ldots;\frac{1}{100}<\frac{1}{75}\)

Do đó: \(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}<\frac{1}{75}+\frac{1}{75}+\cdots+\frac{1}{75}=\frac{25}{75}=\frac13\) (2)

Từ (1),(2) suy ra \(\left(\frac{1}{51}+\frac{1}{52}+\cdots+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+\cdots+\frac{1}{100}\right)<\frac12+\frac13\)

=>\(S<\frac56\)