cho tam giác cân ABC cân tại A. Gọi H là trung điểm BC. a. chứng minh góc BAH = góc CAH. b. Kẻ HE vuông góc AB (E thuộc AB). Kẻ HD vuông góc AC (D thuộc AC). Chứng minh HDE là tam giác cân
cho tam giác abc cân tại a có AB=AC=5cm, BC=8cm. kẻ AH vuông góc với BC (H thuộc BC) a) chứng minh HB=HC và góc BAH= góc CAH. b) tính độ dài AH. c) kẻ HD vươong góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm. Kẻ AH vuông góc với BC (H thuộc BC).
a. Chứng minh HB = HC và góc BAH = góc CAH
b. Kẻ HD vuông góc với AB(D thuộc AB) Kẻ HE vuông góc với Ac (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
a) Xét hai tam giác vuông $AHB$ và $AHC$ có:
$AH$ là cạnh chung;
$AB = AC$ (gt);
Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)
Suy ra $HB = HC$ (Hai cạnh tương ứng)
$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).
b) Xét hai tam giác vuông $ADH$ và $AEH$ có:
$AH$ là cạnh chung;
$\widehat{BAH} = \widehat{CAH}$ (cmt);
Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).
Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.
Cho tam giác ABC cân tại A có AB = AC = 5 cm, BC = 8 cm, Kẻ AH vuông góc với BC (H thuộc BC) Chứng minh: a) HB = HC và góc BAH bằng góc CAH. b) Tính độ dài AH. c) kẻ HD vuông góc với AB, HE vuông góc với AC (D thuộc AB, E thuộc AC).Chứng minh tam giác HDE cân
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
cho tam giác ABC cân tại A, kẻ đường cao AH (H thuộc BC)
a/ chứng minh : tam giác AHB= tam giác AHC
b/chứng minh : HB=HC và góc BAH=góc CAH
c/ cho BC=20cm, AB = 8cm.tính độ dài đoạn thẳng AH
d/ kẻ HD vuông góc AB (D thuộc AB), HE vuông góc AC ( E thuộc AC). chứng minh rằng tam giác HDE là tam giác cân
e/ chứng minh rằng DE//BC
Cho tam giác ABC có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC ( H thuộc BC )
a) Chứng minh: HB = HC và góc BAH = góc CAH
c) Kẻ HD vuông góc với AB tại D, HE vuông góc với AC tại E. Chứng minh tam giác HDE cân.
1.Cho tam giác ABC có AB=AC=5cm;BC=8cm.Kẻ AH vuông BC (H thuộc BC)
a/ Chứng minh HB=HC và góc BAH=góc CAH
b/ Tính độ dài AH
c/ Kẻ HD vuôngAB (D thuộc AB);HE vuông AC ( E thuộc AC ). Chứng minh rằng :Tam giác HDE cân
2.Cho tam giác ABC cân tại A ,kẻ AH vuông BC (H thuộc BC )
a/ Chưng minh BAH =CAH
b/ Cho AH = 3cm, BC = 8cm .Tính độ dài AC
c/ Kẻ HE vuông AB , HD vuông AC . Chứng minhAE=AD
d/ Chứng minh ED//BC
Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
Cho tam giác cân ABC (AB=AC), kẻ đường cao AH (H thuộc BC)
a) Chứng minh rawnhf: HB=HC Và góc BAH = góc CAH
b)Từ H kẻ HD vuông góc AB, kẻ HE vuông góc với AC
Chứng minh ràng AD = AE và tam giác HDE là tam giác cân
a/ Xét tam giác AHB và tam giác AHC có:
AH chung
Góc AHB=AHC=90o
Góc ABC=ACB(Tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC(ch-gn)
=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)
b/ Xét tam giác AHD và tam giác AHE có:
AH chung
ADH=AEH=900
DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)
=> Tam giác AHD=tam giác AHE(ch-gn)
=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)
=> Tam giác HDE cân tại H.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh HB = HC
b) Chứng minh góc BAH = góc CAH
c) Kẻ HD vuông góc với AB ( D thuộc AB)
Kẻ HE vuông góc với AC (E thuộc AC)
Chứng minh tam giác HDE là tam giác cân
a) Xét tg ABH và tg ACH, ta có:
\(\widehat{AHB}=\widehat{AHC}\left(AH\perp BC\right)\)
AB=AC(tg ABC cân tại A)
AH cạnh chung
Do đó : tg ABH = tg ACH (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\)HB = HC (2 cạnh tương ứng)
b) Vì tg ABH = tg ACH (câu a)
\(\Rightarrow\)\(\widehat{BAH}=\widehat{CAH}\)(2 góc tương ứng)
c) Xét tg ADH và tg ACH, ta có:
\(\widehat{ADH}=\widehat{AEH}\)(= 90 độ)
AH cạnh chung
góc BAH = góc CAH (câu b)
Do đó: tg ADH = tg AEH (cạnh huyền - góc nhọn)
=> HD = HE (2 cạnh tương ứng)
=> tg HDE cân tại H
2.cho tam giác ABC có AB=AC=5CM, BC=8cm . Kẻ AH vuông góc với BC ( H thuộc BC ) a) chứng minh HB=HC và góc BAH = góc CAH. b) tính độ dài đoạn thẳng AH . c) kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . chứng minh rằng tam giác HDE là tam giác cân
so sánh hd và hc