cho x/2=y/3=z/5 và x+y+x=-90. Số lớn nhất trong ba số x,y,z là bao nhiêu?
Cho x 2 = y 3 = z 5 và x + y + z = -90. Số lớn nhất trong ba số x; y; z là
A. 27
B. -27
C. -18
D. -45
Cho x 2 = y 3 = z 5 v à x + y + z = - 90 . Số lớn nhất trong ba số x; y; z là?
A. 27
B. -27
C. -18
D. -45
Ta có:
Khi đó ta có: x = -18 ; y = -27 ; z = -45
Số lớn nhất là -18
Chọn đáp án C.
Cho x 8 = y 7 = z 12 và x + y + z = -108. Số lớn nhất trong ba số x; y; z là
A. 27
B. -27
C. -18
D. -45
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên
cho 3 số x,y,z thoả mãn x+y+z >\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)và xyz=1
chứng tỏ trong ba số có ít nhất một số lớn hơn 1
Lời giải:
$x+y+z>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$
$\Leftrightarrow x+y+z>xy+yz+xz$ (do $xyz=1$)
$\Leftrightarrow x+y+z-xy-yz-xz>0$
$\Leftrightarrow xyz+x+y+z-xy-yz-xz-1>0$
$\Leftrightarrow (x-xy)+(y+z-yz-1)+(xyz-xz)>0$
$\Leftrightarrow x(1-y)+(1-y)(z-1)-xz(1-y)>0$
$\Leftrightarrow (1-y)(x+z-1-xz)>0$
$\Leftrightarrow (1-y)(1-z)(x-1)>0$
$\Leftrightarrow (1-y)(1-z)(1-x)<0(*)$
Nếu trong 3 số $x,y,z$ đều nhỏ hơn $1$ thì $(1-y)(1-z)(1-x)>0$ (mâu thuẫn với $(*)$)
Do đó trong 3 số có ít nhất 1 số lớn hơn $1$.
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
cho 3 số nguyên x y z . Gọi a là tích của x y z . lập câu lệnh viết a thành một lũy thứa bậc n của một số nguyên dương thì số mũ lớn nhất là bao nhiêu trong python
cho 3 số nguyên x y z . Gọi a là tích của x y z . lập câu lệnh viết a thành một lũy thứa bậc n của một số nguyên dương thì số mũ lớn nhất là bao nhiêu trong python
Chương trình này sẽ nhận 3 số nguyên từ người dùng, tính tích của chúng, và sau đó tìm số mũ lớn nhất mà tích đó có thể được viết dưới dạng lũy thừa của một số nguyên dương. Chúng tôi sử dụng hàm math.log2 để tính số mũ lớn nhất. Lưu ý rằng kết quả sẽ được làm tròn xuống số nguyên gần nhất.
Tìm giá trị lớn nhất của biểu thức: A = x*y + y*z + z*x
Biết rằng x,y,z là ba số thực và x+y+z=3
Dễ chứng minh được: \(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)
Do đó \(xy+yz+zx\le x^2+y^2+z^2\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2xy+2yz+2zx\)
\(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\Leftrightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
\(\Rightarrow A_{max}=3\Leftrightarrow x=y=z=1\)