tìm GTNN biết \(\left(x^z+1\right)^2+\left(y^z+2\right)^4-2\)
hộ mik vs mik đg cần gấp
Cho 3 số dương x,y,z thỏa mãn điều kiện: xy + yz + zx = 1 . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
giúp mik nha mik cần gấp!!!!
Lời giải:
Ta có
\(xy+yz+xz=1\Rightarrow x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)
Tương tự: \(\left\{\begin{matrix} y^2+1=(y+z)(y+x)\\ z^2+1=(z+x)(z+y)\end{matrix}\right.\)
Do đó \(A=x\sqrt{\frac{(y+z)(y+x)(x+z)(z+y)}{(x+y)(x+z)}}+y\sqrt{\frac{(z+x)(z+y)(x+y)(x+z)}{(y+z)(y+x)}}+z\sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}\)
\(\Leftrightarrow A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)
Vậy \(A=2\)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
1.Tìm x,y thuộc z:
a,\(\left|2-x\right|+2=x\)
b,\(x+7=\left|x-9\right|\)
2.Tìm x,y thuộc z:
a,\(\left|x+10\right|+\left|5-y\right|=0\)
b,\(\left|x-40\right|+\left|x-y+10\right|=0\)
c,\(\left|x+y-30\right|+\left|x-y-4\right|=0\)
d,\(\left|x+y-15\right|+\left|xy-56\right|=0\)
GIÚP MIK VS Ạ, MIK ĐANG CẦN GẤP
a, th1 : 2- x +2=x
<=> X=2
Th2: -2 +x +2= x
<=> X có vô sốnghiệm
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
B2:
a, Vì |x + 10| ≥ 0; |5 - y| ≥ 0
=> |x + 10| + |5 - y| ≥ 0 <=> \(\hept{\begin{cases}x+10=0\\5-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-10\\y=5\end{cases}}\)
b, Vì |x - 40| ≥ 0; |x - y + 10| ≥ 0
=> |x - 40| + |x - y + 10| ≥ 0 <=> \(\hept{\begin{cases}x-40=0\\x-y+10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=40\\40-y=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=40\\y=50\end{cases}}\)
c, Vì |x + y - 30| ≥ 0; |x - y - 4| ≥ 0
=> |x + y - 30| + |x - y - 4| ≥ 0 <=> \(\hept{\begin{cases}x+y-30=0\\x-y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=30\\x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\left(30+4\right):2=17\\y=30-17=13\end{cases}}\)
d, Vì |x + y - 15| ≥ 0; |xy - 56| ≥ 0
=> |x + y - 15| + |xy - 56| ≥ 0
=> |x + y - 15| + |xy - 56| = 0
=> \(\hept{\begin{cases}x+y-15=0\\xy-56=0\end{cases}\Rightarrow}\hept{\begin{cases}x=15-y\\xy-56=0\end{cases}}\)
Thay x = 15 - y vào xy - 56 = 0
=> (15 - y)y - 56 = 0
=> 15y - y2 - 56 = 0
=> y2 - 15y + 56 = 0
=> y2 - 7y - 8y + 56 = 0
=> y(y - 7) - 8(y - 7) = 0
=> (y - 7)(y - 8) = 0
\(\Rightarrow\orbr{\begin{cases}y-7=0\\y-8=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=7\\y=8\end{cases}\Rightarrow}\orbr{\begin{cases}x=15-7\\x=15-8\end{cases}\Rightarrow}\orbr{\begin{cases}x=8\\x=7\end{cases}}\)
Vậy....
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Tìm max A=\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Giúp mik vs mình đang cần gấp!!!!!
thk
Ta có:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\Rightarrow x+y+z=xyz\)
Dễ có một vài phép biến đổi cơ bản và bất đẳng thức AM - GM:\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+x^2yz}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\sqrt{\frac{x}{x+z}\cdot\frac{x}{x+y}}\le\frac{\frac{x}{x+z}+\frac{x}{x+y}}{2}\)
Khi đó:\(LHS\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{z+y}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)
\(\left(2x-1\right)^2+\left(3x+2\right)^2-2\left(2x-1\right)\left(3x+2\right)\)
Mong mọi ng giải hộ mik bài này , mik đg cần gấp. Thanks ạ
Ta có :\(\left(2x-1\right)^2+\left(3x+2\right)^2-2\left(2x-1\right)\left(3x+2\right)\) \(=\left(3x+2-2x+1\right)^2\) \(=\left(x+3\right)^2\)
làm ơn có ai giúp mik ko help me!!!!!!!
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
thứ lỗi cho mk , mk không biết làm ; bài này khó quá
Chi x,y,z khác nhau thỏa mãn x+y+z=2018 Tính giá trị biểu thức \(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Giúp mik vs ạ mik tick cho
\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)
\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)
\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
Vậy A = 1
tìm x,y thuộc z:
\(a,\left(x+3\right)\left(y+2\right)=1\)
\(b,\left(x-1\right)\left(x+y\right)=33\)
\(c,\left(2x-5\right)\left(y-6\right)=17\)
\(d,3x+4y-xy=16\)
GIÚP MIK VS, MIK CẦN GẤP LẮM Ạ
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
vì \(\left(x+3\right)\left(y+2\right)=1\)
\(\Rightarrow\left(x+3\right)\text{và}\left(y+2\right)=1\)
\(x+3=1\) \(y+2=1\)
\(x=1-3\) \(y=1-2\)
\(x=-2\) \(y=-1\)
\(\left(2x-1\right)^2+\left(3x+2\right)^2-2\left(2x-1\right)\left(3x+2\right)\)
Mong mọi ng giải hộ mik bài này , mik đg cần gấp. Thanks ạ
Bạn có thể thấy 2x-1 là a , 3x+2 là b thì 2.(2x-1)(3x+2)=2ab
nên phương trình trên có thể dùng bình phương 1 tổng
\(\left(2x-1\right)^2+\left(3x+2\right)^2-2.\left(2x-1\right).\left(3x+2\right)=\left[\left(2x-1\right)-\left(3x+2\right)\right]^2\)
\(=\left(2x-1-3x-2\right)^2=\left(-x-3\right)^2=\left(x+3^2\right)\)
cái cuối là (x+3)2 nhé, không phải (x+32) đâu
Tìm x,y,z biết:
\(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{5}\right)\left(z+\frac{1}{4}\right)=0\) và x+y=y-1=z+1
(mik đang cần gấp. các bn làm nhớ trình bày cách làm nhé.tks)