tim gtnn cua bieu thuc:
A=|x|+|8-x|
cho 2 bieu thuc:
A=(\(\sqrt{20}\) -\(\sqrt{45}\) +3\(\sqrt{5}\) ).\(\sqrt{5}\) va B=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\) +\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\) (Dieu kien: x>0, x khac 1
a) Rut gon bieu thuc A va B
b)Tim cac gia tri cua x de gia tri cua bieu thuc A bang 2lan gia tri B
a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)
\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
b: A=2B
=>\(10=4\sqrt{x}-2\)
=>\(4\sqrt{x}=12\)
=>x=9(nhận)
tim gtnn cua bieu thuc sau (x^2 -9x)^2+ |y-2 | +10
tinh gia tri bieu thuc E = x^10 - 2014 x^9 -2014 x^8 - ... - 2014 x -1 biet x=2015
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
Tim GTNN cua bieu thuc A=|x-7|+6-x
tim GTNN cua bieu thuc A=x-2017|x - 2017| + |x - 2018| + |x - 2019|
Tim GTNN cua bieu thuc A=|x-2|+|x-10|
Ta có: \(A=\left|x-2\right|+\left|x-10\right|=\left|x-2\right|+\left|10-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-2+10-x\right|=\left|-8\right|=8\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\10-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le10\end{matrix}\right.\Rightarrow2\le x\le10\)
Vậy \(MIN_A=8\) khi \(2\le x\le10\)
Tim GTNN cua bieu thuc:
B=|x-2|+|x-6|+5
B = |x - 2| + |x - 6| + 5
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
B = |x - 2| + |x - 6| + 5 = |x - 2| + |6 - x| + 5
B ≥ |x - 2 + 6 - x| + 5 = 4 + 5 = 9
Dấu "=" xảy ra <=> (x - 2)(x - 6) ≥ 0
<=> 2 ≤ x ≤ 6
Vậy gtnn của B là 9 tại 2 ≤ x ≤ 6
B = |x-2|+|x-6|+5
giá trị nhỏ nhất của B là 9 nha bạn
K mk nha
AE giup cai
tim gtnn cua bieu thuc |x+3|+|11-x|
gtnn xảy ra khi 2 giá trị tuyệt đối là 0
Mà Ix+3I+I11-xI=0+0
X sẽ bằng -3 hoặc x=11 nha bạn
Voi x>=-2.Tim GTNN cua bieu thuc N=x^2+2x+1/(x+2)
tim GTNN cua bieu thuc
A = / x + 3 / + / x - 9 /
\(A=|x+3|+|x-9|=|x+3|+|9-x|\ge|x+3+9-x|=12.\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+3\right)\left(9-x\right)\ge0\)
\(\Leftrightarrow-3\le x\le9\)
Vậy: Amin=12\(\Leftrightarrow-3\le x\le9\)